General Method of Program Code Obfuscation
(draft)

Gregory Wroblewski

Wroclaw 2002



Contents

Acknowledgments

Abstract

1

Introduction

1.1 Goals and Assumptions . . . . . . . . . ...
1.2 Current State of the Art . . . . . . . . . . . . ...
1.3 Overview of Chapters . . . . . . . . . . . . . . e

What is Code Obfuscation?

2.1 Definition of Obfuscation Process . . . . . . . . . . ... .. ... ... ... ..

2.2 A Taxonomy of Obfuscating Transformations . . . . . . ... ... .. .. ...,

2.3 Algorithms of Obfuscation . . . . . . .. .. ... ... oL
2.3.1 Collberg’s Algorithm . . . . . ... ... .. .
2.3.2  Chenxi Wang’s Algorithm . . . . . ... ... ... ... ... .. ...
2.3.3 Other Algorithms of Obfuscation . . . . . ... ... ... . ... .....

2.4 How to Unobfuscate? . . . . . . . . . . . . . .

2.5 Other Problems Connected with Obfuscation . . . .. ... ... ... ......

Theoretical Background

3.1 Basic definitions . . . . . . ...
3.2 Operations on Contexts . . . . . . . . o v i e e e e
3.3 Instructions and Operations . . . . . . . . . . . .. ... .
3.4 Equivalence of Programs . . . . . . . .. ... o
3.5 Definition of the Obfuscation Process . . . . . . . ... ... ... ... ......
3.6 Properties of Obfuscating Transformations . . . . . . . . ... ... . ... ....

Evaluation of Obfuscating Transformations

4.1 Analytical methods . . . . . . . ... ...
4.1.1 Potency of transformation . . . . . . .. ... ... ... ... ...
4.1.2 Resilience of transformation . . . . . . . . ... ...
4.1.3 Cost of transformation . . . . . . . ... ... ... ... ...
4.1.4 General measure . . . . . . . ...

4.2 Empirical methods . . . . . . . ...

Obfuscating Transformations
5.1 Classification . . . . . . . . . . e
5.2 Properties of Programs . . . . . . .. ..o

vi

vii

15
15
17
22
25
26
28

32
32
32
35
37
38
39



CONTENTS

5.3 Imsertion . . . . . . . . L e
5.3.1 Simpleinsertion . . . . .. . ...
5.3.2 Complex insertion . . . . . . . . . . . e
5.3.3 Opaque Constructs . . . . . . . . . o v i v i e e

5.4 Reordering . . . . . . . L

5.5 Data Obfuscation . . . . . . . . . . . . . . e

5.6 Summary of Theoretical Background . . . . . . .. ... ... ... ... .. ..

Algorithm of Obfuscation

6.1 Algorithm Creation Method . . . . . . . . . .. ... ... ... ... ... ....
6.1.1 Instructions Reordering . . . . . . . .. ... ... ... .. ... ...
6.1.2 Blocks Reordering . . . . . . . . ...
6.1.3 Exchange of Fragments . . . . . .. . ... ... ... .. .........
6.1.4 Insertionof Code . . . . . . . . . . . . . . . ...

6.2 Sample Algorithm of Obfuscation . . . . . . .. .. ... ... .. .. .......
6.2.1 Entry Assumptions . . . . . . .. ..o
6.2.2 Basic Elements . . . . . .. . ...
6.2.3 The Structure of the Algorithm . . . . . . ... ... ... ... ......
6.2.4 Insertion of Instructions . . . . . . . ... ... ... ... ... .. ...

6.3 Implementation of the Algorithm . . . . . . ... ... ... ... ...
6.3.1 Data Structures. . . . . . . . . ...
6.3.2 Structure of The Program . . . . . . ... ... ... .. ... ...,
6.3.3 Comments to the Algorithm . . . . . .. ... ... ... ... .......

6.4 Efficiency of the Algorithm . . . . . .. .. ... .. oo
6.4.1 Reference for Obfuscation Quality Tests . . . . . . . . ... ... ... ..
6.4.2 Analytical Test Results . . . . . . . .. ... ... ... ... ...
6.4.3 Empirical Test Results . . . . . . . ... ... .. ... . .
6.4.4 Summary of Quality Test Results . . . . . ... ... ... ... ... ...

Summary and Conclusions

7.1 Summary . . . . . .. e e e e

7.2 Future Work . . . . . .

7.3 Conclusions . . . . . . . . i e e e s

References

Appendix A Test Programs

A.1 Program HASH . . . . . . . . .
A2 Program MATRIX . . . . . . .. . e
A.3 Program BUBSORT . . . . . . .. . ...
A4 Program INSORT . . . . . . . .. e
A5 Program MAXARRAY . . . . . . . o o
A.6 Program QSORT . . . . . . . . . .
A7 Program SIMPROC . . . . .. ..
A.8 Program IDCT . . . . . . . . . e
A9 Program CODETEST . . . . . .. . . ... .
A.10 Program DECODE . . . . . . . .. . e

ii

43
45
46
48
93
o4
95

56
o6
o7
o8
o8
60
61
61
62
63
68
68
69
70
70
71
71
71
74
74

76
76
7
7

79



CONTENTS iii

Appendix B Research on Properties of Programs 91
B.1 Dependencies Between Instructions . . . . . .. ... ... .. 0oL, 91
B.2 Random Programs . . . . .. .. . . .. e 92

Appendix C Examples of Obfuscated Programs 96
C.1 Sorting Program . . . . . . . . . ... e 96

C.1.1 Version for x86 processor . . . . . . . . . v v it e e 96
C.1.2 Version for MIPS processor . . . . . . . . ... .. ... .. .. .. ..., 100
C.2 Program Calculating a Checksum . . . . . . ... .. ... ... .. ... .. 101
C.2.1 Version for x86 processor . . . . . . . . . o it 101
C.2.2 Version for MIPS processor . . . . . . . . . . . ... ... ... ... 104
C.3 Decoding Program . . . . . . . . .. 105
C.3.1 Version for X86 processor . . . . . . . . .ttt 106
C.3.2 Version for MIPS processor . . . . . . .. ... ... .. .. .. .. ..., 109

Appendix D Remaining Sources of Information 111



List of Figures

1.1

2.1

2.2

2.3

2.4

4.1

4.2
4.3

4.4

5.1
5.2

5.3

5.4

9.5
6.1

B.1

B.2

B.3

B4

Methods of software protection according to [25]. . . . . .. ... ... ... ... 2
Example of dismantling of a control flow graph in the Chenxi Wang’s algorithm
(2] o 10
Example of a control flow graph flattening in Chenxi Wang’s algorithm of obfus-
cation [72]. . . . . . L 11
Example of adding of data aliases into flattened control flow graph in Chenxi
Wang’s algorithm of obfuscation [72]. . . . . . . ... ... ... ... ... 12
Example of source code obfuscation in C programming langugage. . . . ... .. 12

Assumed ,orthogonality” of obfuscating transformations measures, according to

[25]. o 33
Basic blocks of typical program. . . . . . .. ... L oo 35
Resilience of a transformation as function of unobfuscating program’s and pro-
grammer’s effort, according to [25]. . . . . ... oo L L 36
Resilience of obfuscating transformation in the form of function (wpt, wpr). . . . 37
Classification of obfuscating transformations. . . . . . ... ... ... .. .... 40
Probability of dependency between instructions in function of distance between
them. . . . . e 42
Probability of construction a real looking program from n randomly selected
instructions. . . . . . ... Lo e 43
Probability of creation of "real looking” program from n random and dependent
instructions. . . . . . ... Lo e 44

Example of binding structures od some objects, creating base for opaque constructs. 50
The main loop of the algorithm of code obfuscation. . . . . ... ... .. .. .. 66

Probability of dependency between instructions of program for Intel x86 processor

in the function of distance between them. . . . . ... ... ... ... ...... 92
Probability of dependency between instructions of program for MIPS R4000 pro-
cessor in the function of distance between them. . . . .. .. .. ... ... ... 93
Probability of occurrence of dependency between instructions of random pro-
grams for Intel x86 processor. . . . . . . . ... 94
Probability of occurrence of dependency between instructions of random pro-
grams for MIPS R4000 processor. . . . . . . . . . . . ... 95

v



List of Tables

3.1
3.2

4.1
4.2

6.1
6.2

6.3
6.4
6.5
6.6

6.7

6.8
6.9
6.10
6.11
6.12
6.13

7.1
Al

B.1
B.2
B.3
B4

B.5
B.6

C.1

Description of used notation. . . . . . . . . .. .. ... . 15
The truth-table for combination of input contexts. . . .. .. .. ... ... ... 19
Overview if typical measures of program’s complexity . . . ... ... ... ... 33
Dependencies between measures of obfuscating transformation. . . . . . ... .. 38
Symbols of activities of code obfuscation. . . .. ... ... ... . ... ..... 56
Examples of fragments of programs in the assembler of Intel 80386 processor,

which can be exchanged. . . . . . ... . oo 59
Examples of expressions and their alternatives. . . . . .. ... ... ... .... 59
Global objects used by the algorithm of obfuscation. . . . . ... ... ... ... 63
Data structures used by the algorithm of obfuscation. . . . . ... ... ... .. 69
Values of complexity measures of test programs for Intel x86 and MIPS R4000

PTOCESSOTS. « « v v v v v e et e e e e e e e e e e e e e e e e 71
An average time of analysis of not obfuscated program by different groups of

people. . . . L e 72

Values of complexity measures of test programs after obfuscation with method 1. 72
Values of complexity measures of test programs after obfuscation with method 2. 73
Values of complexity measures of test programs after obfuscation with method 3. 74

Summary of empirical research of the quality of code obfuscation for metod 1.. . 74
Summary of empirical research of the quality of code obfuscation for metod 2. . . 75
Summary of results of obfuscation algorithm quality measures for program DE-

CODE. . . . e 75
Comparison of three algorithms of code obfuscation. . . . . ... ... ... ... 76
Programs used for research and tests of algorithm of obfuscation. . . . . ... .. 84
Dependencies between instructions in test programs for Intel x86 processor. . . . 91
Dependencies between instructions in test programs for MIPS R4000 processor. . 92

Dependencies between instructions in random programs for processor Intel x86. . 93
Dependencies between instructions in random programs with dependencies for
processor Intel x86. . . . . . . ... 94
Dependencies between instructions in random programs for processor MIPS R4000. 94
Dependencies between instructions in random programs with dependencies for
processor MIPS R4000. . . . . . . . . . . . . e 94

Examples of formatting of listings of obfuscated programs. . . . . . . .. ... .. 96



Acknowledgments

RITING of PhD dissertation is often a long and gravel road, but you can go through it

with help of people you meet. Thanks to my guide: professor Janusz Biernat, my road
became straight and easier to go. Thanks to my wife Joanna I get enough support to avoid
thoughts about giving up. I place special thanks to my Parents, thanks to their sacrifice and
huge help I found quiet environment to finish my work.

vi



Abstract

BFUSCATION of machine code programs is a form of protection of programs’ code against

unauthorized reading. The problem of obfuscation is quite fresh, because first papers
connected directly to obfuscation appeared only few years ago, yet some advanced publications
can be already found. We reviewed them, describing in details most important papers of
Christian Collberg and Chenxi Wang.

We proposed a formal model of program based on the analysis of changes in the usage of
computer’s resources utilized by the program. The model appeared to be useful for development
of obfuscation methods working on the low level of programming. We showed that obfuscating
transformation has some interesting properties and prooved, that for machine programs it is
possible to create a single-pass algorithm of obfuscation. Describing own classification of obfus-
cating transformations we described different methods of obfuscation from the low level point
of view. Obtaining results of research on typical properties of structure of todays computers’
programs we created an efficient method of redundant code generation, required during the
process of obfuscation. On the base of theoretical analysis and experience of another scientists
we proposed a basic algorithm of machine programs obfuscation, which was implemented for
the RISC and CISC type processors.

To estimate efficiency of the obfuscation process we proposed three analytical methods of
quality measurements and results of empirical research. We created three algorithms of machine
programs’ complexity measurement. For the implementation we showed results of quality mea-
surements, performed using analytical and empirical methods. The empirical measurements
were done on three different groups of programmers. From the final results it can be concluded,
what should be the form of an algorithm of obfuscation, giving almost one hundred percent
safe protection against unauthorized analysis. In the final conclusions we estimated values of
parameters of an obfuscation process, giving such good efficiency.

vii



Section 1

Introduction

AST development of multimedia and internet technology in recent years created huge need

for research in methods of protection of intelectual property of software producers. Accord-
ing to common practice we have legal and technical methods. Legal methods are all possible
acts creating appropriate law, which makes legal actions against illegal users and retailers ([15]).
Technical methods can be divided as follows (figure 1.1):

e server-side execution — allows to avoid sending of final code to the user; can be used only
in presence of high availability of broadband networks

e code authentication ([11]) — most efficient when authentication data are sent via network;
user has complete code, which in theory can be mangled — authetication procedures can
be removed

e program encoding — protects against tampering of program; in present programs used
very often ([3]); main drawback is that decoder can be written and used as an universal
tool

e code obfuscation — transformation of executable code, making analysis hard (this implies
changes are hard) ([25], [72]); it should be used with other methods of software protection,
because it does not protect against everything (ex. unauthorized users)

This dissertation covers last method only — youngest and not researched well yet — code
obfuscation.
1.1 Goals and Assumptions
According to needs evolving from research and first experiences I advance following hypothesis:

e obfuscation of machine code is less complex than obfuscation on high-level of programming

e quality of such algorithm is not worse than quality of algorithms proposed so far

To proof the hypothesis I developed an efficient method of obfuscation of machine code
programs. I defined efficiency using analytical and empirical research, which allowed to compare
the method with other proposed methods. Comparison of obtained results with results of other
authors was choosen as the criterion of verification for the second part of the hypothesis. First



SECTION 1. INTRODUCTION 2

Intellectual property protection

— -

Legal Technical
¥
Server-side execution Obfuscation
h 4
Trusted native code Encryption

Figure 1.1: Methods of software protection according to [25].

part was verified by estimation of computer’s resources required to complete compared processes
of obfuscation.
I have choosen low-level of programming — machine code — because:

it is much harder to analyze machine code that code of program written in high-level
language

obfuscation of compiled code can remove some properties inherited from high-level lan-
guage', which can make decompilation impossible and analysis much harder

parsing of machine code is much easier than parsing of most popular high-level languages,
it makes obfuscation algorithm simple

there are no traces in scientific publications that obfuscation of machine code was inves-
tigated

Because of syntactic simplicity of assembler languages, grammar based formal approach
(known from [61] or [2]) was not used, but instead a simple own formal background was devel-

oped.

Realization of the main goal was decomposed on a set of sub-tasks:

1.

Adaptation of selected analytical methods of measurement of programs complexity to
machine code level.

Work out of empirical method measuring efficiency of obfuscating methods.

. Creation of a formal background for the algorithm of obfuscation working on the machine

code level (for class COSH, according to Treleaven’s classification).

Carry out research and measurements of typical properties of programs for present pro-
CesSors.

'For an example repeating fragments of code or similar control flow patterns for particular type of a loop.



SECTION 1. INTRODUCTION 3

5. Development of an efficient method of machine code obfuscation.

6. Implementation of the developed method for most popular architectures (required for
effectiveness tests).

7. Performing of some experiments and mesurements and providing appropriate conclusions.
Execution of presented tasks was described in consecutive chapters of dissertation.

As the subject of research a single function (procedure, method, etc.) of a high level language
was selected. It should be executed in the sequential way and will be analyzed from the machine
code level. The selection was made on the practical basis, because most present programs are
written in the high level languages, while strong protection is required only for small fragments.

1.2 Current State of the Art

Scientific approach to the problem of program code obfuscation is so young, that it is hard
to say about its history. The first trials of systematic research connected with obfuscation
are dated in the late 1990. The main impulse causing more interesting in this subject was fast
development of Java language technologies. The fact, that programs written in this language and
compiled to Java Virtual Machine code can be in a trivial way transformed form the executable
form to source code, caused a great need for creation of theories and tools making obfuscation
of executable code possible. The most advanced work in this area was done by Collberg,
Thomborson, Low and also by Chenxi Wang (as the PhD dissertation) [72]. Publication [76] is
the first one connected directly with obfuscation of machine code programs.

In [25] a first detailed classification of obfuscating transformations was shown and some
analytical methods of quality measures were proposed. A general algorithm of obfuscation
was described, which can be applied to most popular high level programming languages. Yet
final results obtained after implementation and details of implementation were not included, in
opposition to similar, but no so sophisticated papers [49] and [50].

Different approach was taken in [72]. A particular obfuscating transformation was researched
there in pure theoretical basis and next implemented on the source code level of C programming
language. Empirical research of efficiency of the obtained algorithm were not performed.

Specialized methods of programs’ code obfuscation are also present in publications about
software protection or software watermarking. Some of the description of methods of software
protection ([6], [34], [53], [64]) contain techniques of obfuscation, even the authors do not
mention it directly. The same we found in descriptions of software watermarking methods as
well ([29], [57]).

In many papers obfuscation is mentioned as one of the methods of encoding or steganogra-
phy ([5], [35], [36], [42], [51], [71]). Separate group make publications approaching directly or
indirectly the problem of unobfuscation, which is strongly connected with decompilation ([14],
[17], [19], [22], [23], [43], [44]). Similar approach can be found in work dedicated to reverse
engineering ([20], [63], [77]).

In recent years the first attempts to create a theoretical basics of programs’ obfuscation
has appeared, which are based on cryptographic theories. Major accomplishment in this area
are results from [37] and [9], where a proof is shown, that one hundred percent efficient (in
an idealized approach) methods of programs’ obfuscation do not exist. Some alternative mod-
els of further theoretical research were proposed either and suggestion has been made, that



SECTION 1. INTRODUCTION 4

known heuristic approaches ([25], [49], [72]) may indicate, that a class of efficient obfuscating
transformations must exist. Our dissertation is the next example of a heuristic approach.

1.3 Overview of Chapters

Next chapter shows a review of scientific papers about code obfuscation. Works of Collberg and
Chenxi Wang were described in details and general definitions of obfuscating transformation
were given.

Chapter 3 contains description of the format background developed especially for disserta-
tion needs. An alternative definition of obfuscating transformation was given and some theo-
retical conclusions, useful in constructing of obfuscating algorithm, were presented.

In chapter 4 a typical methods of measurement of quality of obfuscating transformations
were described, together with adaptation to the low level of programming. A background of
empirical research methodology is also included.

Chapter 5 contains classification and description of obfuscating transformations — basic
elements of obfuscation process.

The method of creation of obfuscating algorithms with sample algorithm was presented in
chapter 6. Remarks about implementation and discussion about efficiency was also included.

Summary, proposals of future research and final conclusions are included in chapter 7.

Data concernig research and experiments are presented in consecutive appendixes:
e appendix A — listings of test programs

e appendix B — methodology of research of machine code programs properties

e appendix C — examples of obfuscation for selected test programs

e appendix D — web sources of information about code obfuscation

In the appendixes detailed data are included, which allow to reproduce all described exper-
iments.Some intermediate results of research are also described.



Section 2

What is Code Obfuscation?

HERE is not a common formal definition of the obfuscation process in current publica-

tions. Obfuscation, being a transformation of program into program, can be understand
as the special case of data coding. The further analysis shows, that there are a lot of similar-
ities between obfuscation and cryptography, but still we cannot treat these two techniques as
equivalent.

2.1 Definition of Obfuscation Process

Depending on context different definitions of the obfuscation process can be found. Analyzing
obfuscation from the security point of view and describing obfuscating transformation as a
”one-way translation”, the following definition was given in [72]:

Definition 2.1 Let TR be translating process, such that P T8 B translates source program P
into a binary program B. TR is a one-way translation, when time required for reconstruction
of program P from program B is greater from a specific constant T'.

There exists full analogy between one-way translation and cryptography: cryptographic
schemas work with assumption, that coding is easy and reverse process is computationally
complex (without having the key).

Most general available definition of the obfuscation process can be found in papers [25]
[26] and others written by the same authors. Accorting to their idea obfuscation process is a
transformation of a computer program into a program.

Definition 2.2 Let 7 (P) be program, transformation of program P. T is an obfuscating trans-
formation, if T (P) has the same observable behavior as P. In addition T must follow conditions:

e if program P fails to terminate or terminates with an error condition, then T (P) may or
may not terminate

e otherwise P termiates and T (P) must terminate and produce the same output as P

Above definition does not imply how a transformation of program should work in order to
be obfuscating transformation. Authors of paper [25] make proposition of a classification of
all obfuscating transformations, according to their experience and current state-of-the-art in
obfuscation techniques.



SECTION 2. WHAT IS CODE OBFUSCATION? 6

2.2 A Taxonomy of Obfuscating Transformations

Basic criterion of classification is target of application. Four groups bound to obfuscation of
some information were created here (]25]):

e layout obfuscation — its source and/or binary structure (ex. change of exported functions
names on random character strings)

e data obfuscation — some local and global structures
e control obfuscation — of main skeleton creating a program

e preventive obfuscation — protecting from decompilators and debuggers

In every group there are lot of specific methods, which were classified and described with
details in [25]. Because the original description is rather verbose, I presented short overview
only.

Without doubts classification made by Collberg does not cover all possibilities of layout
obfuscation. The reason comes from specialization of the developed algorithm 2. Techniques
of identifiers coding and removing of comments are described in a clear-cut way, but into the
category of ”changing format” we can put more transformation, not only applying to source
code, but also to binary code. For Java programs it can be change of layout of blocks inside
a method, while for machine code binary program typical would be modification of executable
file (ex. increasing of code sections).

Classification of data obfuscation methods is much more complicated. They were divided
on three main groups:

1. Storage and encoding obfuscation — change of representation and methods of usage of
variables, for an example:

e split variables — representation of a variable in the form of more than one variables
and identity mapping
e promote scalars to objects — ex. integer variables to objects with complex methods,

instead of trivian addition or multiplication

b+l—a

m, with assumption

e convert static data to procedure — ex. value 1 to formula
that a = b and both values are precise

e change encoding — ex. logical values TRUE and FALSE for boolean variables

e change a variable lifetime — ex. from local to global or from local to the element of
object

2. Aggregation obfuscation — merge independent data and split dependent data, for an ex-
ample:

e merge scalar variables — storing in single consistent area, requres changes in references
to these vairables

e modify inheritance relations — ex. adding redundant objects to already present struc-
tures

2High level object oriented languages, ex. Java.



SECTION 2. WHAT IS CODE OBFUSCATION? 7

e split, fold, merge arrays — complication of access to arrays
3. Ordering obfuscation — reordering of internal objects layout, for an example:

e reorder variables — local, global or in structures (originally this order is random very
seldom)

e reorder methods — as they are part of objects

e reorder arrays — ex. non-standard representation of multi-dimensional arrays

Techniques presented in the groups are just examples good for obfuscation of structures in
an object oriented programming language. Indeed, it is hard to find methods, inheritance and
even arrays in pure machine level program.

In classification of control obfuscation methods also three groups of transformations were
created:

1. Computations obfuscation — change in main structure of control flow, for an example:

e reducible to non-reducible flow graphs — ex. insertion of contructions does not oc-
curring in high level languages, [2] p. 606

e extend loop condition — addition of conditions not changing behavior of program

e table interpretation — ex. creation of a simple virtual processes and addition of
pseudo-code interpreters

2. Aggregation obfuscation — spliting and merging fragments of code, for an example:

e inline method — instead of method call, independent obfuscation of every inserted
copy
e outline statements — artificial creation of global procedures

e clone methods — similar to inline method

e unroll loop — possible only for short loops with constant counter

3. Ordering obfuscation — reordering of blocks, loops and expressions, with preservation of
dependecies, for an example:

e reorder block — ex. in branching instructions
e reorder loop — possible often in nested loops

e reorder expression — very cheap when there are no dependecies between two exepres-
sions (no extra code required)

Even the authors admitted in [25], that most of presented obfuscating transformations are
eventually inserting of a redundant code into the obfuscated program. Only selection of pro-
gramming language makes them so sophisticated and created so many methods.

Apart from such a general approach, in study of other authors, ex. Chexi Wang [72], much
simpler classifications can be found, prepared for a specific application.

For an example in the same work obfuscating transformations are classified as:

e intra-procedural transformations



SECTION 2. WHAT IS CODE OBFUSCATION? 8

— degeneration of control flow by change of static branches on dynamic

— loose injection of data aliases
e inter-procedural transformations

— change of function calls into indirect calls, using pointers to functions
— creation of aliases to function pointers

— injection of data dependent aliases between different procedures

In this classification methods of creation of pointers to data aliases were distinguished, be-
cause it has been proved ([32]), that elimination of such constructions is a task computationally
very complex.

2.3 Algorithms of Obfuscation

Until now most general and most advanced algorithm was presented in [25]. It was adapted to
high level programming languages, especially object oriented languages. Below, the main part
of obfuscation procedure is presented.

2.3.1 Collberg’s Algorithm

The original algorithm is quite large. Even the authors have given just its basic data structures
and general methodology. Main part of the algorithm gets as input the following objects:

a) application A, consisted of source files or executable objects Cy, Cs, ...

(
(b) standard libraries L1, La, ... defined in given programming language
(c) set of obfuscating transformations {77, 7, ...}

(

d) mapping P, from every transformation 7 into a set of language constructions inserted by
T into application

(e) set of functions measuring quality of 7 related to a code S
(f) set of input data I = {I3, I, ...} of application A

(g) two numerical values: AcceptCost > 0 and ReqObf > 0, where first given information
about acceptable increase of resources required by program after obfuscation and second
— about required level of obfuscation

Before execution of the main loop, some auxiliary structures has to be built:
1. Load elements of application Cy,Cs, ..., which means:

e for source code: full lexical, syntactical and semantic analysis of code® (exactly like
in case of compilation)

e for executable code: making of analogous structures/analysis (used only in case of
objects including full or almost full source code information)

3Less efficient algorithm may use syntactical analysis only.



SECTION 2. WHAT IS CODE OBFUSCATION? 9

2. Load libraries L1, Lo, ... called directly or indirectly by obfuscated application.

3. Build internal representation of the whole application. Selection of internal representation
depends on source code language type and complexity of used obfuscating transformations.
Typical set of data structures contains:

control flow graph for every procedure in A

call graph for every procedure in A

inheritance graph for all classes in A

global data flow graph in A
4. Create auxiliary mappings using additional algorithms:

e R(M), for every procedure M in A return duration of execution of M

e Pg(S), for every fragment of code S in A return set of language constructions used
in S
o I(9), for every fragment of code S in A return a priority of obfuscation of S

e A(S,T), for every fragment of code S in A return level of accuracy of applying 7 to
code §

5. Execute main loop of obfuscation (algorithm 2.1).

6. Process final internal structures to generate obfuscated application A’.

Algorithms created with presented method prepare the environment for execution of the
main loop of obfuscation. The main loop is just a simple template based on two additional
functions, because most things were done during preparation.

Algorithm 2.1 Apply obfuscating transformations to application. In every step select a frag-
ment of code S and appropriate transformation T and apply it to S. Processing ends, when
required level of obfuscation of acceptable cost of execution of the destination code is reached.
REPEAT
S := SelectCode(I)
T := SelectTransformation(S, A)
Apply T to S and update appropriate structures reprezenting the application (ex. data
and control flow graphs)
UNTIL NotFinished(ReqObf, AcceptCost, S,T,I)

2.3.2 Chenxi Wang’s Algorithm

In the paper [72] a more specialized algorithm of obfuscation is shown (in comparison to general
algorithm presented by Collberg). The algorithm has been divided on the two parts: interpro-
cedural and intraprocedural. We are interested in obfuscation of single functions only, so only
interprocedural part will be described.

The input of the algorithm is a typical procedure of a high level language (figure 2.1(a)).
Obfuscation process of every procedure has been divided into three stages:

e dismantling of control flow graph



SECTION 2. WHAT IS CODE OBFUSCATION? 10

e flattening of control flow graph
e addition of structures with data aliasing

In the first stage the conrol flow graph is built and every loop construction is substituted
with if...goto construction (figure 2.1(b)). The main goal of this stage is to simplify program
analysis in the next stages.

a=1
b=2
int a, b; 1 l
a=1; L1: if (1(@a<10))
=D goto L4
while(a<10){ !
b=a+b; b=a+b
if(b>10) if(!'(b>10) )
b—; goto L2
at+;
} X
b--
use(b);
!
(a) L2: a++
goto L1
|
1
L4: use (b) (b)

Figure 2.1: Example of dismantling of a control flow graph in the Chenxi Wang’s algorithm
[72].

There are branches and nodes in the dismantled contol flow graph. If we enumerate all
branches and add a variable holding number of currently executed branch, then it is possible to
flatten the control flow graph into the form like on the figure 2.2. Change of value of variable
swVar causes jump from one branch into another.

The process of flattening can be reversed in an easy way, mainly because data causing
jumps between the branches are constant. The solution proposed in [72] adds data aliases in
the form of a redundant global array gl[] (figure 2.3). The array contains data required to
switch branches during execution and not important random data. When switching occurrs
values in the array are changed in the way, that important data remain unchanged. It is proved
in [72] that static analysis of such a program in computationally complex.

2.3.3 Other Algorithms of Obfuscation

Additional examples of code obfuscation algorithms are programs obfuscating source and exe-
cutable form of Java classes. Unfortunately these programs are described only from commercial



SECTION 2. WHAT IS CODE OBFUSCATION? 11

swVar =1

¥

switch (swVar)

S3

S2

L2_: L3: L4:
a=1; H !(av< 1—0)8 b=b+a; b—
DA dhs if(1(b>10)) i i
swVar=2; e swVar=5;
swVar = 3] Slse

swVar=4;

goto switch;

Figure 2.2: Example of a control flow graph flattening in Chenxi Wang’s algorithm of obfusca-
tion [72].

point of view, while technical details are not available. Although there are many obfuscators
to choose from and competition is strong, there are no solutions going beyond general schema.
Typical techniques in these schema are: obfuscation of identifiers, injection of constructions not
present in Java language (ex. loops with goto), simple reordering of program structure and
addition of some redundant code. Most application take not obfuscated executable files for Java
Virtual Machine as input. The files are first decompiled, which makes impossible obfuscation
of already obfuscated code. Typical examples of programs obfuscating Java language code are
products: Dash-O Pro from preEmptive solutions* and RetroGuard from Retrologic®.

Another examples can be taken from environment of enthusiasts of source code obfuscation
of C programming language (figure 2.4)%. Used techniques could be named in Collberg’s clas-
sification as program layout obfuscation. To make programs obfuscated in such a way they use
automatic tools and "manual” transformations. Yet in practice this technique given very weak
protection, because there are lot of programs formatting source codes in the automatic way.
They ofter remove completely all efects of obfuscation. Even additional and redundat code can
be removed automatically or ”manualy” after the formating, because it becomes highly visible.

‘http://www.preemptive.com
5h‘ctp://wrm,v.retrologic .com
Lot of examples can be found on pages http://www.ioccc.org.



SECTION 2. WHAT IS CODE OBFUSCATION? 12

intgl];
switch (swVar) |, . .. |

define.d ash s

L3: L ' defined as 4

b=b+a; switch (swWVar)

V..

if(1(0>10)) .-~ Co
sWNEE =S defined as ? <
else 2t .
swvar=4:""" L3: defined as 7
b=b+a; ’
if(1(b>10}))
: swVar = 9[915]+g[g[23]1]
else -
goto switch; swVar = g[11+ g[ 23+g[2 ]I

X

goto switch;

Figure 2.3: Example of adding of data aliases into flattened control flow graph in Chenxi Wang’s
algorithm of obfuscation [72].

#include <stdio.h>
#include <stdlib.h>

int main(int a,char “*A) {FILE*B;typedef unsigned long C;C b
[8]; if (! (a==78&&(B= fo en(l[A]," g 1)) return l;For%?[b]=0
1 7[b1<5:7[b]+)b[7L b]]=strtoul{A[2+7[b 11,0,16-17[b]*6):5[
b1=3[k] i while ((6[b]= etc(B)
Y1=(C)- D2 [b])for 7[b]=0
17[b]<4 (7 [b]++ YiF(((6 [b]>>7[
bI)ACGL bl>>(7-7[b])))&1)6[ bl A=(1
<<7[b]) A(l<<(7-7[b1));5[b] A= 6[b]
<<(0[b] -8);for(7[b]=0;7[b] <8:7[b]
++)if{( 5[b]>>(0[b]- 1))H&1)5
[b]1=(5[ bl<<1)A 1[b]; else 5[
bl<<=1; 15[b]1&=(({ ()1 <<(0[b]
-1)-1 <<1)|1; if(2[b] Yfor(7[
b]=0:7[ b]<(0[b JI>>1):7 [b] ++)
iF(((5[bl>>7[b1)A(5 [bl>>(0 [b]-1-7 [(b1)))&1)5[b]A=((C)
1<<?[b])A((C)1<<(0[ b]-1-7[ b1));5[ blA=4[b];fclose(R);
printf("'%0* x\n", ( int) (O[ b]+3)»> 2,5[b1); return 0;}

Figure 2.4: Example of source code obfuscation in C programming langugage.

2.4 How to Unobfuscate?

When we talk about obfuscation, it is natural to ask: is it possible to unobfuscate an obfus-
cated program? The answer is positive: in most cases reversible process can be performed,



SECTION 2. WHAT IS CODE OBFUSCATION? 13

taking the obfuscated program and returning original program. Yet there is no easy answer
to question: how to unobfuscate? It can be observed, that obfuscation is a contrary process
to code optimization. Another area close to unobfuscation is decompilation of programs. Ei-
ther optimization of compiled code ([2], [61]) or decompilation of machine code to high-level
languages representation ([14], [16], [17], [19], [18], [21], [22], [69]), are covered very wide in
scientific literature.

Sample classification of methods used in unobfuscation of code was presented in [25]. Us-
ing own experience and results of current state-of-the-art research authors selected following
methods:

e identifying and evaluating opaque constructs’ — allows to detect and remove inserted
opaque constructs ([32])

e identification by pattern matching — comparison of fragments with database of patterns
to detect inserted parts

e identification by program slicing — is one of the classic methods of decompilation, can
detect unimportant fragments of code ([18], [69])

e statistical analysis — analysis of partial results in code extracted during program execution

([73])

e evaluation by data flow analysis — classic method of optimization, allows to bind separated
fragments of original program and remove inserted code ([8], [17], [19], [40])

e cvaluation by theorem proving — allows to obtain result of program without its execution,
useful only for simple constructions ([47])

It can be seen now, that there are lot of well described techniques, efficiently unobfuscating
program code. The only problem which arises very often is very high computational com-
plexity unobfuscating algorithms (with no chances for simplification). This weak place is used
during obfuscation and only using such property can guarantee an efficient protection against
unauthorized analysis of obfuscated program code.

2.5 Other Problems Connected with Obfuscation

There are three important problems of software theory and practice, strongly connected with
obfuscation through common goals, methods and procedures:

1. Software protection — code obfuscation techniques has its place in general theory of soft-
ware protection increasing securing of a intelectual property ([15], [36]).

2. Software watermarking — is a technique which allows to indentify a program (thanks to
introduced code — markers), even after some modifications of its contents ([28], [29], [30]).

3. Complexity measurements of software — are part of theoretic and practic quality research
of programs; are used as basic tool in tests of quality of obfuscation algortihms ([1], [7],
[13], [31], [39], [54], [56]).

Topaque construct — a program construction, which is very difficult to static analysis (exponential or higher
computational complexity)



SECTION 2. WHAT IS CODE OBFUSCATION? 14

In case of software protection usually (ex. [72]) following scenarios of attacks are distin-
guished:

e denial-of-service of program — most often by giving some tampered data as input, causing
program to misbehave

e program tampering — introduction of changes in program contents, causing change of
behavior, required by the attacker

e impersonation during authentification — giving impersonated data during authorization,
impossible to verify by program

Program obfuscation is one of methods to protect against unauthorized modification of its
contents. Main advantage of obfuscation lays in its resistance to impersonation and denial-of-
service methods.

Obfuscation can be also a method of insertion of identifiers — watermarkers. Obfuscated
program has properties of encrypted message with elements of error correction. Lot of changes
are needed to make obfuscated program unidentifiable.

Comparison of programs is the very old and well documented problem. It arose as a need of
evaluation of software engineers work ([31]). Similarly obfuscating algorithms can be evaluated.
In the same way like engineer, an algorithm gets defined task and produces executable program.
Used methods of complexity measurement for generated programs will be analogous to methods
used in case of software engineers.



Section 3

Theoretical Background

O construct and describe the general algorithm of code obfuscation we created a simple

formal system defining in a clear way such elements of present computers like instruction

or program. The system uses classic mathematical background: sets, variables, functions,
Cartesian product, vectors, spaces, etc.

In the table 3.1 a short description of used notation is shown. In general the notation follows

common standards. We assume, that indexes of vectors’ elements (small letters ¢ or k) denote

dimension in an N-dimensional space (take values from the set {1,2,..., N}). Special attention

should be paid to writing v i vy, which is the short form of expression A vf = vé“ A vl £ vl

ki
Table 3.1: Description of used notation.
Notation | Example | Description
small letter v dimension v, element of vector v
capital letter w set of word’s values W
small bold letter v vector v € S of elements from sets W;
capital bold letter S set of vectors S = W7 x Wy x ... x Wy
small letter + indexes vg- element ¢ of vector v; € S (dimension)
X W1 x Ws | operator of the Cartesian product
xN xN V; | Cartesian product of sets: V4 x Vo x ... x Viy
Q @ value describing unimportant element of vector v
Q Qa vector of values «
capital letter + (...) I(v) vector function executing instruction [
capital letters + indexes LIz sequence of instructions I, Is; composition Iz(1(v))
capital letter N N set of natural numbers
funkcion + upper index I(v) element ¢ of vector I(v)
equality + index Vi i vy | equality of v and vs, except for element ¢

3.1 Basic definitions

In our analysis we will consider the class of machines described in Treleaven’s classification
by the abbreviation COSH (control driven, shared data), which is a generalization of classical
von Neumann model. According to this model computer consists of the following elements:

15



SECTION 3. THEORETICAL BACKGROUND 16

e memory — ordered set of words holding information, in general these are locations (cells)
of the memory and registers of processor

e processor — a device transforming information by execution of instructions

e bus (unimportant in our analysis)

State of memory can be changed only by processor executing an instruction. The possible
ways of execution are described by set of instructions I where every instruction has assigned its
object of execution. Such description of computer is called instruction set architecture (ISA).

Definition 3.1 Architecture of computer A(I,S) we call a set of instructions I = {1, Ia, ..., Ipr},
which is set of functions I; : S — S, where:

S = {(Ul,’l)2,...,’UN) ol S W1,1)2 € Wo, ...,’UN < WN} =W x Wy x ... x Wy

is space of vectors, created from all possible values of dimensions (words) v, v%, ..., vV, and

S! C S is anti-domain of function I;.}

Set S is called space of states of given computer. State of an architecture can be for an
example a configuration of internal devices storing information. Each instruction has in addition
a property of control forwarding: instruction decides, which instruction must be executed next.
In present computers instructions change usually only small number of dimensions (elements
of vectors) in the space of states, mapping most of them one-to-one. Given an instruction we
can determine changed dimensions, called output context and changing dimensions, called input
context.

Definition 3.2 Input context St is a set of vectors, consisted of values of all dimensions used
by given function I (having influence on the function):

Sy = {xN.\Vi such that V; = W; if \/ (I(v)F # I(vo)* v I(vi)t#0b)

Vi ’:ineS
ki

otherwise V; = {a}}

where symbol « is an unique value (not present in sets Wy, Wa, ..., W ) meaning a word not
important for given function.

Definition 3.3 Output context Sp is a set of vectors, consisted of values of all dimensions
changed by given funcion I:

So = {xX,V; such that V; =W; if \/ (I(vi)=vy A o)
V1,V2€S

otherwise V; = {a}}

It can be seen, that space Sp contains only dimensions, which are not mapped by identity
mapping (change of particular element of vectors vi and va).

8In real computers in it often true, that S; =S.



SECTION 3. THEORETICAL BACKGROUND 17

Example 3.1 Let us consider a simplest computer with space of states S = Wy x Wo x W3,
where W1 = Wo = W3 = N and one hypothetical instruction, adding two natural numbers from
sets Wy and Wy, according to mapping:

I:(vhv%0%) — (! + 0202, 0%)
for vt € Wy,v? € Wa,v3 € Wa. It can be easily seen, that for given instruction
Sp =W x Wa x {a}
because only two dimensions have influence on the final results, and
So = Wi x{a} x {a}
because only the first dimension holds the final result.

Domain of every instruction contains anti-domain of any instruction, that’s why we can
consider sequences of instructions, thus define a program.

Definition 3.4 Program P is an instruction or a sequence: (instruction, program) or a se-
quence: (program, instruction):

P=I v I|IP v P|I

Above definition describes either static or dynamic program (a process). Further only static
programs will be analyzed, which define not the sequence of execution, but a way of context
processing. This way does not have to be equivalent to the execution process, because some
instructions can be executed many times and some may not be executed at all. Executed
sequence is defined as dynamic program. We assume that all analyzed programs satisfy the
stop condition, i.e. they produce assigned result in the finite time.

It is derived from definition 3.4, that program is a sequential composition of instructions.
Domain and anti-domain of program satisfy conditions of domain and anti-domain of instruction
(given in definition 3.1), because anti-domain of every instruction is included in domain — space
of states of given machine. Thus definitions 3.2 and 3.3 can be applied to all possible programs.

3.2 Operations on Contexts

Composition of instructions is a function either, so for a program we can determine input and
output context as well, using given definitions. We can also combine contexts of instructions
included in program, obtaining in the final result input and output context of the whole program.
Combining we use operation being a specific sum of contexts, defined as follows:

Definition 3.5 Sum of contexts S1 and Se is a set of vectors consisted of elements of vectors
from space S1 or Sy not being the value . For given contexts S1 and So the sum of contexts
(noted by the operator V) is calculated from the formula:

SlLUJSg:{xi]LVi such that V; =W; if /\ (U’iGVVi Vv véGVVi)

v1ES]
voESs

otherwise V; = {a}}



SECTION 3. THEORETICAL BACKGROUND 18

Similarly we define a specific product of contexts:

Definition 3.6 Product of contexts S1 and Ss s a set of vectors consisted of elements of vectors
from space S1 or Sy not being the value o neither in S1 nor in So. For given contexts S1 and
Sy the product of contexts (noted by operator M) is calculated from the formula:

Slrm52:{><f\;1m such that V; =W; if /\ (i eW; A vheW)

V1ES]
voESy

otherwise V; = {a}}
Using the product of contexts we define relation of inclusion for contexts:

Definition 3.7 Context Sy is included in context So, if all elements of its vectors, which are
not the value o in Sy, are not also the value o in Sy. Relation of inclusion is noted with use of
operator C:

S1ES & S51mSy =5
Next used operation is a specfic difference of contexts:

Definition 3.8 Difference of contexts S1 and Sa is a set of vectors consisted of only these
elements of vectors from space S1, which are in space Sy the value . For given contexts Sp
and So difference of contexts (noted by operator ©) is calculated from the formula:

S1 08y = {xN,Vi such that V; =W, if /\ (Wi#a A vh=a)

V1651
Vv2ES2

otherwise V; = {a}}

Theorem 3.1 Given a program P = I1|Iy and instructions’ input contexts: Sri, Sro and output
contexts: Sp1, So2, the input context Sip of the program P can be calculated from the formula:

Sip = (S12© So1) U S
Proof. Using definition of input context (definition 3.2) given for the program P:

Srp = {xL,Vi suchthat V; =W; if \/ (P(v0)¥# P(va)¥ v P(v1)' #0})
v#vzes

ki
otherwise V; = {a}}

let us consider all possible cases of combination of input contexts, knowing that P = I;|I (table
3.2).

According to definitions 3.2 and 3.3 given element of input or output context may belong
either to set W; or set {a}. Analyzing dependencies of Srp from contexts Sr1, Sr2, So1, So2 we
find, that context S;p depends only on contexts S71, Sp1 and Syo. For given elements of these
three contexts values of element of context S;p can be obtained from definition: element is used
by the program P (is different from the value «), if transforming a vector from S changes at
least one element. Taking into account, that the program P is composition of instructions Iy
and Is we may expand, that an element is used by the program P, if is used by the instruction



SECTION 3. THEORETICAL BACKGROUND 19

Table 3.2: The truth-table for combination of input contexts.
| Si1 | Soi | Sr2 || Sip |

Sl= e (o= Ze]e
SIEISIEIS R

§§§§@@QQ
EEE SRS

I; or is used by the instruction I, but was not changed by instruction ;. The change of an
element in instruction I; can be detected as appropriate value in context Sp; being different
from a.

According to definitions 3.5 and 3.8 we may state, that formula:

Sip = (S120501) U S

represents mapping shown in the table 3.2, thus it calculates input context of the program P.
[

Theorem 3.2 Given a program P = I1|Is and instructions’ output contexts: Sop1, So2, the
output context Sop of the program P:

a) if after composition of instructions I; and Iy none of elements from the domain of the
program P is mapped by indentity mapping and it was not mapped by identity mapping by
both instructions, i.e.:”

A (V (Wvi)=va vV DLvi)=va) A o} #vb) = (3.1)

1=1,2,....N v1,v2€S

= \/ (P(va)=va A vh#0))

v3,v4ES

is the sum of contexts Sp1 and Sps:

Sop = S01 U So2

b) otherwise must be calculated directly from the definition 3.3, but the following property is
true:

Sopr € (So1 U Sp2)

9The condition means, that after combination the given program or its part ”do nothing”.



SECTION 3. THEORETICAL BACKGROUND 20

Proof.

a) Let us write definition 3.3 for the program P = I;|ls:

Sop = {xiLVi such that Vi =W; if \/ (Il|l(vi)=v2 A v} #v})
V1,V2€S

otherwise V; = {a}}
expanding composition of instructions on two operations:

Sop = {xiL;Vi suchthat Vi=W; if  \/ (Ii(vi)=vs A I(vs)=va (32)

Vv1,v2,V3ES
A ) # )
otherwise V; = {a}}

If the assumption (3.1) is true, it is also true, that:

(i #v5 A v #vh) = 0] £ 0} (33)
thus the equivalence is true:

Vi # vy e (0] A5V vh # ) (34)
Inserting (3.4) into (3.2) we obtain:

SOP:{X@']\Ll‘/; such that V; =W, if \/ (Il(Vl):Vg N IQ(Vg):VQ N

v1,v2,v3ES
(v #v5 Vv # v)))
otherwise V; = {a}}

and after some simple logic transformations:

Sop = {xX,V; such that V; =W; if \/ (Ii(v1) =v3 A ol #vb)

v1,Va,V3ES
Vo (I2(vs) =va A v #v5)) (3.5)
otherwise V; = {a}}
Expressions \/ ([1(vi) = vz A o # 08) and \/ ((I2(v3) = va A v} # vd)

V1,V3€S V2,V3€S
describe full'® dimensions of output contexts Sp; and Sos (according to definition 3.3).
We may write then:

\/ (i(vi) =vs A ol #vd) = /\ vi e W;

V1,V3€S V16501

and

\/ (Ip(v3) =va A vk #vh) = /\ vk € W;

va2,V3ES v2ESo2

'Not containing the value « only.



SECTION 3. THEORETICAL BACKGROUND 21

and next use above statements, inserting them into (3.5):

Sop = {xN.,V; such that V; =W; if /\ (Wiew; v uheW)

v1E€So1
v2E€S502

otherwise V; = {a}}
obtaining as the final result definition 3.5 given for the sum of contexts Sp1, Soe:

Sop = S01 U So2

b) If assumption (3.1) is not true, then expression (3.3) is false, thus equivalence (3.4) is also

false and we cannot finish the proof like in the case (a), that’s why statement (3.2) cannot
be simplified to the sum of output contexts and context Spop must be calculated directly
from definition.
Yet we observe, that equivalence (3.4) is responsible for ”admission” of an ¢ element into
context Sop, according to formula (3.2). Thus ignoring the equivalence we can only add
some additional elements into the sum Sp; U Spo, comparing with the correct context
Sop. All elements not being the value a in Spp, will not be a in Sp1 U Spe as well. So
it must be true, that:

Sop € (So1 Y So2) (3.6)

[

The case describe by relation (3.6) occurs, when second part of combined program ”cancels”
all operations executed in the first part on an element of context. Such behaviour would be
strange in the obfuscated program and even if present, then for small number of ”canceled”
elements, according to proof of the case (b), we can apply formula using sum of contexts without
bigger consequences for the obfuscation process.

Example 3.2 An architecture of computer is given with the space of states S = W1 x Wy X
W3 x Wy, where Wy = Wo = W3 = Wy = N, and two instructions adding two natural numbers,
according to mapping:

I : (v 0%, 03, 01) — (01, 02, 0t + 02,0t
and
I : (o1, 02,03, 01) — (vl 03 + 0t 03, 0)
where v € Wi, v% € Wo,v3 € Wi, v* € Wy. Input contexts of instructions are equal to:

S]1=W1 XWQX{Oz}X {Oz}
S]QZ{O[}X{O(}XW3><W4

and output contexts:

So1 = {a} x {a} x W3 x {a}
Soz2 ={a} x Wi x {a} x {a}



SECTION 3. THEORETICAL BACKGROUND 22

A program P = I1|Is was created. According to theorem 3.1 input context of the program P has
form:

S]p:W1><W2X{Oz}><W4
and input context of the program P (according to theorem 3.2):

Sop = {a} x Wa x W3 x {a}

2

s0 the program P uses elements v', v, v* of every vector v € S and changes elements v? and

v3.

As it can be seen from the example, summing of output contexts leads to growth of programs’
output context, which for longer programs makes their output context equal to the analyzed
subspace of given computer’s space of states. Yet in practice input and output contexts are
given together with a program. A program does not contain information, which dimensions of
the output context are real results of calculations (used by an user) and which are just some
temporary calculations. In the example 3.2 the program P adds three natural numbers. On
the end we get also a temporary result: sum of two natural numbers. Thus giving the output
context a priori is justified by logic analysis and practice.'!

It should be also noticed, that output context given with program does not have to be equal
to the output context calculated from the definition 3.2 (example 3.3). Typically present pro-
grams generate a lot of temporary calculations, which are unimportant ont the end of program’s
run.

3.3 Instructions and Operations

On the begining of the obfuscation process a program is given P(vi) = vy and its input Sy
and output Sp context. In a typical present computer the space of states S has milions or even
bilions of dimensions, that’s why for obfuscation we choose a subspace S’ of the space S (it can
be for an example set of processor’s registers only). To define input and output contexts in an
easy way in the limited subspace S’, we introduce the following notation:

Sro ={(a,b,d)}

where Sjo is the defined space, a context of program for the machine defined by subspace
S" = {(a,b,c,d,e) :a € A;b € B,ce€ C,d € D,e € E}. Above notation is a short version of
the form Sro = {(a,b,,d,a) : a € A,b € B,d € D}. Usually even subspace S’ has a lot of
dimensions, while analyzed subspace is a small fragment only. Not writing the unimportant
dimensions in input and output contexts simplifies the formal analysis and it is some kind of
analogy to the idea of vector subspace.'?

Example 3.3 Given a machine program written in the assembler of Motorola 68000 processor
and input context St = {(d0,d1,d2,d3,d4)} and output context So = {(d2,d4,d5)}:

"I An interested analogy is here the wave function in quantum mechanics. Without an observer (user) examined
process described by a given wave function is not determined, similarly like result of program’s calculations.
2Subspace {(x,y,0)} of the vector space {(z,y,2)}, z,9,2 € R is a vector subspace, while the subspace

{(z,y,5)} is not.



SECTION 3. THEORETICAL BACKGROUND 23

move.w d0,d5 ; db = do

add.w di1,d5 ; db = db + di
add.w d0,d1 ; d1 = d1 + do
sub.w d3,d5 ; db = db - d3
sub.w d1,d2 ; d2 = d2 - di

Using only definition the output context of the program in the example would have had
form S;, = {(d1,d2,d5)}. Absence of the element d1 in Sp means, that result of calculations
included in this element is not important. On the other hand presence of the element d4 in the
input and output context means, that it is important for some further analysis.

Given a program P(vi) = vy without given input and output context, we assume, that
there exists an input contest S7 and output context Ss. If a program is given and a context
(without additional ”input” or ”output”), then we assume that input and output contexts are
equal (the same space).

For every program P(vi) = va, given its input and output context, it is possible, using
theorem 3.2, to determine output context after every instruction of the program ([61]).

To satisfy needs which appeared during construction of the general algorithm of code ob-
fuscation, we classified all instructions according to their processing specificity:

e operations — instructions which do not change sequence of program execution and do not
use elements of machine context, which have:

— conncetion to an environment outside the architecture

— ability of changing execution of other operations (crossing natural input context for
given operation, ex. for addition variables holding numbers to add are such part of
context)

e branches — instructions changing sequence of execution

e special — instructions, which do not qualify to above groups

In most present assembler languages this classification can be projected onto the following
groups of instructions:

e operations

— arithmetic

— logic

— shifts and rotations

— copying data

— operating on bits and bitfields

e branches

— unconditional
— conditional

— with/without point of return



SECTION 3. THEORETICAL BACKGROUND 24

e special

— changing execution state (ex. RESET, HALT)

— input/output services
There are also two important groups of operations:

e reversible operations — when there is an operation or program P; such that:

I(vy) = vy is reversible <= \/ /\ \/ Pr(vo) =vr

Pr vo€So viE€ST

where St is input context for I, output context for P; and Sp is output context for I,
input context for Pr; above condition means, that the function realizing instruction I is
a one-to-one mapping

e irreversible operations — otherwise

which could be also mapped onto assembler instructions. In real processors some intructions
cannot be classified as reversible or irreversible, because reversibility depends on the current
context.

Assuming that currently most popular machines are two-address kind and that in three-
address machines two-address instructions are used most often (see appendix C), for practice
reasons we introduced following classification (reversibility should be considered in context
consisted of arguments of instructions, without a register containing onverflow or carry flags):

e reversible operations

arithmetic (multiplication and division with additional conditions)
logical of type EX-OR, EX-NOR and NOT

rotations

— exchange of value
e irreversible operations

— addition with carrying; subtraction with borrowing
— copying (with exception of exchanging values)

— logical AND, OR

— shifts

Above classification will have an additional justification and application when we present
the general algorithm of obfuscation.

A sequence of instruction can be treated as reversible or irreversible too. In some excep-
tional cases, using appropriate context, a sequence of irreversible operations can be reversible.
Although the concept of reversible sequence of instructions is more general than concept of
reversible operation, reversible sequences containing irreversible operations occurr very rare in
practical applications and reversibility of such sequences is created mainly by an extra copy of
one of input arguments. Because of this we will consider only reversible operations and their
interactions with programs.



SECTION 3. THEORETICAL BACKGROUND 25

Example 3.4 Given machine program written in assembler of microprocessor Intel 80386

stc ; C=1
adc eax,ebx ; eax = eax + ebx + C

is reversible in context {(eax,ebx)}, although both operations are irreversible in their con-
texts: first — {(C)}, second — {(eax, ebx, C') }. Reversibility of such program comes from non-used
part of context, in the example it is carry flag C.

Example 3.5 Given machine program written in assembler of microprocessor Intel 80386. Ev-
ery instruction was classified as follows:

mov ecx,10 ; ecx = 10, irreversible
_loop:
lodsd ; eax = [esi], irreversible
add edx,eax ; edx = edx + eax, reversible in context {(eax,edx)}
loop _loop ; branch
in al,dx ; special, input/output

In further analysis of programs often used transformation will be separation or concatenation
of programs:

Definition 3.9 Program P is the concatenation of programs Py = Ii|Is|I3]...|I, and P, =
I3 I5]...| Iy, when:

P = P\ |P, = L|L|I3]...| LI | 5|15 .. | I},

Given an a priori condition P = Pj|P, it is understood, that program P was split in any
place on two programs P; and Ps.

3.4 Equivalence of Programs

A natural definition of programs’ equivalence, based on the idea of machine’s state, would not
include contexts of programs, so its applications could be very limited. Introducing input and
output contexts we obtained a little bit more complicated definition of programs’ equivalence.

Definition 3.10 Program P is equivalent to program P in the input context Sy, output context
So, if both programs map the same dimensions not being the value o in Sy, on dimensions not
being value o in So. To write the definition using symbols we define two auxiliary sets of
indexes’ values:

J={x: \/ v® # a}
vZeSr

K={x: \/ v® £ o}

vZeSo
Programs P1, P» are equivalent, if:
A (Av=ve N\ P = Pv2)")
V1,V2€S JGJ keK

Given definition satisfies condition of symmetry, but we must remember, that two programs
does not have to be equivalent in their contexts (obatined from theorems 3.1, 3.2 or given a



SECTION 3. THEORETICAL BACKGROUND 26

priori). Such approach seems to be justified in the case of computer programs, especially in
the area of obfuscation. The definition guarantees, that program P; equivalent to program P
in contexts: input S7, output Sp, realizes exatly the same mapping on the used dimensons
of the input context. Additional operations executed by program P; are redundant from the
program’s P, point of view.

In the symbolic form we note equivalence of program P; to program P» in contexts: input
S, output Sp, by:

Py =P(vy)=vo

The placement of arguments in the given relation remains important, because still its symmetry
depends on given contexts.

Lemma 3.1 If P3 = Pi(v) = vx and Py = Py(vx) = V', then it is true, that:
P3‘P4 = Pl‘PQ(V) = V/
Proof. From the basic assumptions we get according to definition 3.10:

J={z: \/ v® # a}

vresS
K={x: \/ v® £ a}
vZeSx
L={x: \/ v® £ a}
vres!
and
N (Avi=vie N\ P(vi)F=Pi(vo)F) A
vi1,va€S jeJ keK
(N vf =5 & N\ Pi(vi)! = Pa(v2)))
keK leL
thus:

N (A\vi=v]e \PslPi(v1) = Pi|Pa(v2))

v1,v2€8 jeJ leL

We obtained definition 3.10. After simplification we get:

P3‘P4 = Pl‘PQ(V) = V/

3.5 Definition of the Obfuscation Process

Using described above basic definitions we created an alternative (in opposite to for an example
[25]) definition of obfuscating transformation.



SECTION 3. THEORETICAL BACKGROUND 27

Definition 3.11 Obfuscating transformation T is such a change of program P(v) = v’ into
program T (P), that there is program P’, restoring original output context of program P and
program T (P)| P’ is equivalent to program P in contexts: input S,output S’.

T(P)(v) =vr is obfuscating tr. of P(v) =V < (\/ P'(vr)=v' AN T(P)|P' =P(v)=V)
pr

Sequence of instructions P’, returning the condition of equivalence is called completion of
obfuscating transformation. It is not possible to obfuscate all instructions of given architecture,
because for some instructions context cannot be changed (like for input/output instructions). In
general case it is hard to say if such a change of usage will be an reversible operation, providing
correctness of transformation according to given definition.

Separation of the obfuscated program on two parts: 7 (P) and P’, allows to bind reversible
operations to obfuscating transformations. Definition based on the assumption of equivalence
of programs P and 7 (P) would be less practical, because it would describe only enhancement
of contexts in 7 (P) related to contexts from P.

The condition of equivalence 7 (P)|P’ = P(v) = v’ implies necessity of keeping in programs
T(P)(v) =vr and P'(vy) = v’ identity of mapping. It guarantees that if 7 (P)|P'(v1) = va,
then S C Sy and S’ C Sy and T(P)|P'(v) =V'.

Example 3.6 Given sequence of instructions of processor Intel 80386 considered in the context
{(eazx, ebzx, ecx,edx)}:

mov eax, [esi] ; eax = [esi]
mov edx, [edi] ; edx = [edi]
add eax,edx ; eax = eax + edx
sub ebx,edx ; ebx = ebx - edx

was obfuscated with a transformation, which generated sequence:

xchg eax,ebx ; eax <—-> ebx
mov ebx, [esi] ; ebx = [esi]

mov edx, [edi] ; edx = [edi]

add ebx,123 ; ebx = ebx + 123
xchg ecx,edx ; ecx <-> edx
add ebx,ecx ; ebx = ebx + ecx
sub edx,321 ; edx = edx - 321
sub eax,ecx ; eax = eax - ecXx

The completion of this transformation is sequence:

add edx,321 ; edx = edx + 321
xchg ecx,edx ; ecx <-> edx
sub ebx,123 ; ebx = ebx - 123
xchg eax,ebx ; eax <—-> ebx

which brings back original usage of context {(eaz, ebz, ecx,edx)}.



SECTION 3. THEORETICAL BACKGROUND 28

3.6 Properties of Obfuscating Transformations

Obfuscating transformations meeting conditions of definition 3.11 have two interesting proper-
ties, which are backbone of contruction of general algorithm of code obfuscation.

Theorem 3.3 If T is an obfuscating transformation, then T (P) can contain only:

e programs equivalent to instructions from P, i.e. such instructions Pr, that if I is a part
of program P and I(v1) = vo then Pr = I(v1) = vo

e reversible operations

e instructions, which do not change the output context in program P, i.e. such instruc-
tions 1(v11) = vag, for which it is true, that for given beginning fragment of program P,
P'(v1) = Vb, always Sa2 N Sy ={0}

Proof. (indirect) Let Ip be sum of sets: type of instructions in program P, reversible
operations and instructions, which do not change the output context in P, Ix be the set of
irreversible operations changing this context, and Ij; — set of all instructions of given machine.
From the classification presented on the page 23 we obtain:

IpUIN =1y
and

IpNIny =92
Contradiction of the thesis of theorem is:

7T (P) is obfuscating tr. of P = \/ I¢lIp
I€T(P)

Also I € Iy, because it must be an instruction of the given machine, which implies that:

Iely

Using definition of reversible operation we can writen, that an instruction I(vy) = va is irre-
versible operation, when:

VoV v =va v I(vi)=vs)

Vv1,V11E€S51 V2E€S>

This condition is contradictory with part of the definitions of equivalence of programs, so
according to definitions 3.11 7 is not an obfuscation transformation (construction of completion
of 7(P) becomes impossible). ®

Some of instructions of real computers, like ,adc eax,ebx” in the example 3.4, can be
recersible operation (eax = eax + ebx + C) and instruction extending a context of obfuscated
program at the same time (using carry flag C' when the program context is {(eax, ebx)}).

In the proof of second property of obfuscating transformation the following lemma will be
useful:

Lemma 3.2 For any pair of contexts vi, va of given machine, there is a program Px(v1) = va.



SECTION 3. THEORETICAL BACKGROUND 29

Proof. It is known that vy i vo belong to the set S, set of all possible states of the machine:
Vi,Vg € S

Only execution of an instruction causes change of state of the machine, so the set S is created
as the result of execution of all possible programs. Thus v; and vy could only be created as the
result of execution of a programs. To make possible repetition of any execution of any program
without external initialization of the machine!'3, we assume:

/\ (\/ P(vy) =vp < \/P’(VB) —Vy4)

Sa,SpCS P P’

We know now, that there exist P;(v) = v; and P»(v) = vy (where v is some choosen state of
the machine). In addition there exists Pj(v1) = v, so program Py = Pj|P» must transform vy
into vo. m

Second property of obfuscating transformation will be shown first on the example.

Example 3.7 Given program in assembler of processor Intel 80386 considered in context {(eax, ebx, esi, edi.

mov eax, [esi] ; eax = [esi]
add eax,ebx ; eax = eax + ebx
mov [edi],eax ; [edi] = eax
inc ebx ; ebx = ebx + 1
jz  jump ; if ebx = 0,

; do jump

was split into two independent programs (with the same context):

mov eax, [esi] ; eax = [esi]
add eax,ebx ; eax = eax + ebx
and
mov [edi],eax ; [edi] = eax
inc ebx ; ebx = ebx + 1
jz  Jjump ; if ebx =0,
; do jump

and next they were separately obfuscated using different obfuscating transformations. As
the result following programs were obtained:

sub ebx,10 ; ebx = ebx - 10

; change of usage!
mov eax, [esi] ; eax = [esi]
add eax,20 ; eax = eax + 10

; change of usage!
add eax,ebx ; eax = eax + ebx

and

13External in relation to instructions of programs, for an example using a RESET button.



SECTION 3. THEORETICAL BACKGROUND 30

; values in eax and ebx were not restored!

mov [edi],eax ; [edi] = eax
inc ebx ; ebx = ebx + 1
mov eax,10 ; eax = 10
jz  jump ; 1f ebx = 0,

; do jump

After concatenation the obfuscated programs would not give correct result, equivalent to
result returned by original program. Value in regiester eax is increased by 10 on the end
of the first part of obfuscated program and the second part ignores this change. It follows
from definition of the obfuscating transformation, which does not impose to return the original
context after obfuscation, but only requires that performed changes must be reversible. If we
insert now between two programs the sequence of instructions:

eax - 10
ebx + 10

sub eax,10 ; eax
add ebx,10 ; ebx

then we obtain program working correctly. Analysis of this example leads to the following
theorem:

Theorem 3.4 For any program P split in any place into two programs P = Pi| P, which are
obfuscated by two different obfuscating transformations T1(P1) and Ta(P2), there is a program
Px such that T(P) = T1(Py)|Px|72(P2) is obfuscating transformation of P.

Proof. From the lemma 3.2 we know, that for any pair of states the program Px exists.
During the proof we use definition of obfuscating transformation and the fact, that output
context of program P is input context of program FP,. From the assumptions we get:

P(V)Z Vp — (Pl(V) =vx A P2(VX> = Vp)

V (T(P)(V) =vi A Ta(P)(vx) = v2)
T, T2

Definition of 7;(P;) (3.11) implies that:

T1(Py) is obfuscating tr. = \/ P(vi)=vx = Px=PF
P/

so the sequnce of instructions Py is the complection of transformation 7;(P;). In addition
Ti(P)|P' = Pi(v) = vy, so:

Ti(P)|P'(v) = vx
which implies:
T(P) = Ti(P)|Px|T2(P2)(v) = v2

which means, that 7 (P) preserves output context of program P,. From definition of T5(P3) we
get:

T5(P,) is obfuscating tr. = \/ P"(vy) =vp
P”



SECTION 3. THEORETICAL BACKGROUND 31

and To(Ps)|P" = Pa2(vx) = vp. According to lemma ?? and definition 3.11 7 (P) is obfuscating
transformation (preserved resersibility of changes introduced into program P and equivalence
of programs). ®

The main conclusion coming from the thorem is fact, that it is possible to create pure
sequential algorithm of obfuscation, which performs obfuscation with single-pass — instruction
after instruction, without any need of updating a structures describing control flow in the
obfuscated program.



Section 4

Evaluation of Obfuscating
Transformations

HERE are two complementary methods of verification of performed obfuscation process

quality. Analytical methods extract information taking obfuscation algorithm parameters,
source program and obfusated program. They are best in comparison of different algorithms
of obfuscation, but they cannot answer the basic question: how efficient is given algorithm
(an absolute value)? They fail because human factor has the great impact and only empirical
research can give reasonable answer. Empirical research has of course only statistical meaning,
but it can be tuned with appropriate research methodology.

4.1 Analytical methods

In [25] Collberg, Thomborson and Low have proposed three measures, describing how efficient
and useful is given obfuscating transformation:

e potency — measure of complexity added to obfuscated program, in most cases it describes
how hard is to understand a program by a human

e resilience — measures how well a given transformation protects a program from an auto-
matic deobfuscator (known algorithms of unobfuscation)

e cost — describes increase in amount of resources a program must use after obfuscation to
execute

Different combinations of proposed measures are used to obtain one general measure. It is
assumed that all three measures are ,orthogonal” (figure 4.1), which means that it is possible
to construct algorithms calculating them in such a way, that any change in value of one will
not influence others. It turns out, that in general this cannot be done easily (chapter 4.1.4).

4.1.1 Potency of transformation

To define potency of obfuscating transformation we introduce first measure, describing how
much sequence of instructions P; is more complicated (unreadable) than sequence P». Problem
of measureing programs complexity is quite old (ex. see [38]). In the frame of software theory
lot of different measures were created, which can be applied according to current needs. Unfor-
tunately lot of them cannot be use in case of general algorithm of obfuscation based on low-level

32



SECTION 4. EVALUATION OF OBFUSCATING TRANSFORMATIONS 33

4 Potency

\Rfsilience

Cost

Figure 4.1: Assumed ,orthogonality” of obfuscating transformations measures, according to
[25].

programming, because they use high-level programming languages constructions. Examples of
measures which can be used are shown in table 4.1.

Table 4.1: Overview if typical measures of program’s complexity

| Measure | Description | Author |
Length of program | number of instructions + number of arguments | Halstead [38]
Nesting level number of nested conditions Harrison [39]
Data flow number of references to local variables Oviedo [59]

Definition 4.1 For given complexity measure E(P) potency of obfuscating transformation T
in relation to obfuscated program P, II(T, P) is defined as:

E(T(P))

E(P) !

I(7,P) =
It is given, that 7 is strong obfuscating transformation, when II(7, P) > 0, for selected

group of complexity measures.
In application with machine code measures from table 4.1 are defined as follows!?:

1. Measure of length Ej, — describes specific length of program P containing N instructions,
considers also number of arguments in instructions, according to formula (for two-address
machines):

N 0  when instruction ¢ has no arguments
E(T,P)= Z ¢ dla ¢ =< 0.5 when instruction ¢ has one argument
i=1 1 when instruction ¢ has two arguments

H8pecific adaptation to machine code is required, because original description of these measures contains
constructions typical for high-level programming languages: blocks, loops, etc. In addition we ignore calls to
subroutines (only single function is analyzed).



SECTION 4. EVALUATION OF OBFUSCATING TRANSFORMATIONS 34

Values ¢; were selected empirically, starting from the rule, that value 1 corresponds to
instructions which have most often occurring number of arguments. Remaining values
were selected in a way creating diverified values of measure Ep, for selected test programs
(appendix A). For three-address machines ¢; = 1 corresponds to instructions having three
arguments. Exceptions in an architecture, ex. three-address instructions in two-address
machines were ignored, by choosing for them also ¢; = 1. Alleged arguments were ignored
too, because they appear with very small frequency in programs.

2. Measure of depth Ep — is an integer number, describing nesting level of conditional
branches in static program. We propose to calculate Fp with following recursive al-
gorithm:

Algorithm 4.1 Input of main procedure is number of currently processed instruction i
and current nesting level nest. Algorithm uses global array FLAG, initiazed on 0. This
array hold information if given instruction was already processed. On the beginning given
procedure is called with parameters equal 0, which means first instruction of program and
nesting level zero.

(a) copy value of nest into variable njmp

(b) check in FLAG[i], if current instruction was processed already, if it was, go to (g)
(c) set in FLAG[i] value 1, informing, that given instruction was already processed
(d) if processed instruction is unconditional branch, assign to i destination address

(e) if instruction is conditional branch, add 1 to nest, call procedure with destination
address and current value of nest, assign to njmp mazimum value of nesting level
returned by call and current value of njmp

(f) if there is any next instruction, increase i by 1 and go to (b)

(g9) return value of max(nest,njmp), as the result of measurement

3. Measure of flow Er — is a rational number, describing the average number of references
to local memory!'® in basic block of a program (figure 4.2). Basic block is defined as
continuous sequence of instructions laying between two nodes of control flow graph:

| M
Ep(T,P) = Mzai
i=1

where M is number of basic blocks in program, a; is number of references to local memory
in block ¢. In practice this measure is also calculated with simple algorithm:

Algorithm 4.2 Algorithm uses two global variables: TOTSUM — holding number of ref-
erences detected so far, and TOTNUM — holding number of basic blocks detected so far.
After assigning zero to TOTSUM and one to TOTNUM, for every instruction in given
program P following loop is executed:

(a) if instruction references to local memory, increase TOTSUM by 1

(b) if instruction is a conditional jump, increase TOTNUM by 1 and skip step (c)

15Most ofter these are local variables and parameters of a function.



SECTION 4. EVALUATION OF OBFUSCATING TRANSFORMATIONS 35

start

instruction 1

instruction 2 BLOCK 1
instruction 3

conditional branch

instruction 4

instruction & BLOCK 2
instruction 6

instruction 7 BLOCK 3

end

Figure 4.2: Basic blocks of typical program.

(¢) if instruction is destination of a branch(es), increase TOTNUM by 1

As the final result we get in TOTSUM sum of all references to local memory and in TOT-
NUM number of basic blocks in program. Value of flow measure is calculated from the formula:

TOTSUM

F=TOTNUM

According to experiments (chapter 6.4.1), all three measures grow proportional in the obfus-
cation process. Efficient process of obfuscation should influence all three measures in the same
way. The simplest method of concatenation of these measures — arithmetic average — seems to
be rational choice.

To show potency in the form of single number we introduced average potency of obfuscation
process. It is calculated as arithmetic average of potency calculated for three measures of
complexity:

1

HA(Tvp) - 3(

EL(7(P))  Ep(T(P) , Er(7(P))
EL(P) Ep(P) Er(P)

)1

4.1.2 Resilience of transformation

Resilience of a transformation was defined in [25] as strenght of protection against automatic
unobfuscation of the program. In practice resilience in described as combination of two mea-
sures:

1. Programmer’s effort — time needed for programmer to write unobfuscating program.

2. Unobfuscator’s effort — time of execution of such a program and amount of resources
required for efficient execution.



SECTION 4. EVALUATION OF OBFUSCATING TRANSFORMATIONS 36

It is hard to represent these measures in the form of numbers, because they have kind
of statistical properties and depend on personal skills of a programmer and available system
resources. Instead a descriptive scale was proposed ([25], [26]). Resilience ® can be a value
from the set:

® € {trivial, weak, strong, full, one-way}

Definition 4.2 Let 7(P) be obfuscating transformation of a program P. ®(7T,P) is the re-
silience of transformation T and can be a value:

one-way if an information from P was removed
F(wpt,wpr) in other case

o(T,P) = {

where wpt is programmer’s effort, wpr is program’s effort and F is the function of resilience
shown on figure 4.3.

Programmer
effort
Inter-
process — full full
Inter-
procedural | strong full
Global ——  Weak strong
Local — trivial weak
i i » uscator
Poly Exp effort
time time

Figure 4.3: Resilience of a transformation as function of unobfuscating program’s and program-
mer’s effort, according to [25].

Program’s effort was described as ponynomial or exponential, according to resources needed
during the process of obfuscation. Programmer’s effort was classified in the four levels:

e local — when local dependencies analysis is sufficient to unobfuscate
e global — when an additional global analysis of dependencies is required
e procedural — when there is a need to examine dependencies between procedures

e process based — when analyzed program is a parallel program and obfuscation concerns
more than one process



SECTION 4. EVALUATION OF OBFUSCATING TRANSFORMATIONS 37

If we add to above proposal the fifth level: random, when a programmer must guess correct
form of obfuscated program (one-way resilience) and if we add two more levels to program’s ef-
fort: NP-complete and infinite, then the function of resilience F(wpt, wpr) can be approximated
by function f(wpt,wpr) = max(wpt, wpr) (figure 4.4), where appropriate levels of programmer’s
and program’s effort are assigned to numbers 1,2,...,5. In result we get numbers assigned to
ordered values of function ®(7, P).

Figure 4.4: Resilience of obfuscating transformation in the form of function max(wpt, wpr).

Proposed approach is sufficient for practical applications, even we don’t get a number after
the measurement. Precise description of required computational complexity would have been
based on complicated analysis, equally complex to the unobfuscation process. It can be seen
on the example of algorithm of full analysis of interprocedural calls dependencies, given in [2]
(p.658). In general, complexity of this algorithm is known (and is high), while checking if for a
particular case the full analysis is possible with much lower complexity, is not an easy task.

4.1.3 Cost of transformation

Cost of a transformation is a penalty for obfuscating a program. In practice all methods
of obfuscation make programs more complex. Fortunately in most cases it does not change
the class of complexity (ex. from O(n) to O(n?)). In [25] the following definition of cost of
obfuscating transformation was given:

Definition 4.3 Let T(P) be obfuscating transformation of a program P. W(7T,P) is the cost



SECTION 4. EVALUATION OF OBFUSCATING TRANSFORMATIONS 38

of transformation T and can be a value:

P
P
P
P

dear  when execution of T
costly when execution of T
cheap when execution of T
free when execution of T

requires exponentially more resources than P
requires O(nP), p > 1 more resources than P
requires O(n) more resources than P
requires O(1) more resources than P

(T, P) =

o~~~
~— — —

It is hard to find an universal method of static analysis, giving for a program exact number
representing cost of an obfuscating transformation. In practice dynamic research must be per-
formed with use of some software tools, because of huge complexity of such analysis. Moreover,
the cost of transformation can be very different depending on obfuscating program. Insertion
of multiplication instruction into a loop executing single addition in most processors will be
classified as a cheap transformation. Insertion of the same instruction into the main loop of
Fast Fourier Transform will give free cost.

Empirically determined cost of an obfuscating transformation can be given as the average
factor of increase of execution time for the program after obfuscation, calculated for different
input data. Representing by ¢(P(d;)) time of execution of program P, obtained for a set of
input data d;, given N different sets of input data, empirically calculated cost of transformation
T can be found from the formula:

4.1.4 General measure

In [25] a simple definition of a general measure of an obfuscating transfomation was given.
It was defined as a combination of three basic measures: potency, resilience and cost. It is
hard to entangle these measures in the way allowing to obtain single value, especially because
indeed they are not orthogonal. According to general analysis, based only on definitions of these
measures, following dependencies can be concluded, shown in table 4.2. Growth of potency does
not have to cause growth of resilience, because general complexity of program does not have
to be connected with complexity of unobfuscatio process. In opposite way, growth of resilience
must cause growth of potency, because general complexity of a program grows always. Cost of
a transformation grows more or less, when resilience and/or potency grows, but growth of cost
does not have to cause the growth of neither potency nor resilience, because a complexity can
remain the same.

Table 4.2: Dependencies between measures of obfuscating transformation.
| Growth || Potency | Resilience | Cost |

Potency variously | grows
Resilience grows grows
Cost grows variously

In final decision, we decided to show results of quality measures of obfuscating transfor-
mations in the form of four objects: numerical value of an average potency of transformation,
empirically determined cost and two descriptive measures: resilience and cost.

From the presented material we can see, that all analytical measures have rather relative
meaning and should be used in the group of results obtained for different programs, to provide



SECTION 4. EVALUATION OF OBFUSCATING TRANSFORMATIONS 39

a broad view for comparison. Giving the analytical measures only for single program can be
a false information. In practice the same program is measured before and after obfuscation,
which gives quite good comparison.

4.2 Empirical methods

Analytical methods of obfuscating transformations quality measurements give set of informa-
tions about applied obfuscation process. Yet they do not answer the basic question: how efficient
given obfuscating transformation protected a program from unauthorized analysis? To obtain
answer to this question we must perform empirical methods of measurement, which in our case
will be research done on some groups of people.

The main task of programs’ obfuscation is protection against unauthorized analysis of a
program. The last step of the process of analysis belongs always to a human, so to measure
real efficiency of the obfuscation process, we must conduct appropriate empirical research.

The correct empirical test requires good choice of test group, program, algorithm of obfus-
cation and its parameters and statistical processing of obtained results. Possible persons, who
can try to analize the obfuscated program, were classified into three groups according to their
skills:

e students — in most cases of computer science or closely related subjects, having sufficient
knowledge of assebler languages, but with low programming experience

e engineers — persons with high programming experience, not always having full knowledge
about assembler programming environment

e crackers — representatives of the sub-culture, which main goal is free distribution of any
information, including computer programs, as well as breaking protections present in
software and information; persons having very good knowledge of assembler environment,
tracing, decoding and transforming tools; persons having most often high programming
experience!6

A single function was selected for testing. The function decodes and checks correctness of
a memory fragment, very often used in program’s protection. As the result of test with get
the minimum time needed in given group for correct understanding of meaning of obfuscated
program. The fastest answer is the very important result, because security is the main goal of
our process.!” Examples of performed tests of this kind are included in chapter 6.4.3.

16Sources of information about this sub-culture are included in appendix D.
1"We do not assume for an example: average strength of a rope when we design an elevator.



Section 5

Obfuscating Transformations

HE basic element of an obfuscating algorithm is obfuscating transformation. The quality

of obfuscation process strongly depends on quality and types of used transformations.
Because of the low level approach we decided to introduce our own, simplified classification of
obfuscating transformations.

5.1 Classification

In opposition to Collberg’s classification ([25]), based mainly on the structure of typical object
oriented language, a taxonomy much closer to the theoretical background from the chapter 3
was designed and it is close to low level programming (on hardware level). Such approach
allowed to simplify significantly method of obfuscation and in practice reduced total number of
obfuscating transformations, which should have been taken into detailed analysis (figure 5.1).

Obfuscation
Reordering Insertion
simple complex

Figure 5.1: Classification of obfuscating transformations.

It is easy to see that there is no classification of control and data obfuscation. We removed it,
to obtain fastest possible algorithm, which on the base of presented theory requires obfuscation
of small fragments of programs. Large fragments would require analysis of larger context,
including all used data structures. Yet it does not mean, that data obfuscation in the algorithm

40



SECTION 5. OBFUSCATING TRANSFORMATIONS 41

designed in sucha way does not exist. It is strongly entangled with control obfuscation, which
is shown with details in section 5.5.

As the basic criterion of classification was taken type of information, used by the algorithm
to make decision about inserted instruction. If the information consists only of machine context,
it is simple insertion. Complex insertion uses more information, analyzing larger fragment of
program.

Treating program only as a sequence of instructions a simple classification of obfuscating
transformations can be constructed. On the given program P, split on two parts P = P;|P,
following obfuscating transformations can be applied:

e insertion of additional instructions:
P =P |P, = T(P) = P|P/| P>
while P;r must satisfy complex conditions shown in section 5.3
e change of fragment of program P, ex. P; on Pg:
P=P|P,= T(P)=Pc|P,
while following conditions are satisfied for Pi(v) = vy and Po(ve) = va:

SMSc =85 A S imS3=51 A PCEpl(V):Vl

e reordering of instructions of program P:
P = P1|P2 — T(P) = P2|P1
while following condition is satisfied'®:

(Pl(V) =vy A PQ(Vlg) = V2) = S1mSiy = {@}

e reordering of blocks of program P:
P = Pl‘PQ — T(P) = J1|P2‘J2|P1‘J3

where Jp, Jo, J3 are branches preserving correct order of execution of P, and P;

5.2 Properties of Programs

In case of insertion of an additional code the natural problem arises: what and how to insert?
The easiest solution would be insertion of random instructions, to provide high resilience the
randomness should be parametrized with some empirical values obtained for given model from
real programs.

In further part we use two properties of typical programs of todays machines. The main
source of these properties are dependencies, occurring between instructions placed in the pro-
gram with given distance. Such dependency happens, when current instructions uses elements
of context changed by earlier instruction.

81y practice the condition is satistied most often, when P; and P> are instructions of the given machine.
That’s why this type of reordering is called reordering of instructions.



SECTION 5. OBFUSCATING TRANSFORMATIONS 42

Definition 5.1 Given program P = (I1,Is,...,In) which is N instructions long. Let S; be
input context for instruction i and S} its output context. Probability of dependency between
instructions distant d instructions in program P can be calculated from the formula:

1
p(Pd)=—— ) ¢ for ¢;= J=1,2,d—
N—d ; 0 in other case

N-d { 1 when S} @ Siyq # {@} and A Si M Siva={a}
j 1
Dependencies were calculated in context [registers, local variables!?, global memory],
according to the following algorithm:

Algorithm 5.1 Given program P, which is N instructions long and distanced = 1,2,3,..., N —
1.

1. Set counter of dependencies k = 0.

2. For every pair of instructions from P, which has d — 1 instructions between, increase
k by 1, if instruction earlier in the pair changes context of the input context of further
instruction and no instruction between them modifies the changed part of context.

3. Return ﬁ as the result of propability of dependency.

The first property is shown on the figure 5.2. From the empirical research we determined,
that for typical machines and programs probability of dependecy between instructions falls
with distance between them and for machines with small number of registers (ex. Intel x86),
stabilizes on some level??. It makes anaylisis of program simle, but on the other hand automatic
detection of absence of dependencies (easy to implement) can indicate a non-real program or a
fragment (when data are significantly different from shown on the figure 5.2).

dependency

0,45
0,4
0,35
0,3 -
0,25
0,2
0,15
0,1
0,05
0

W x86
S MIPS

1 2 3 4 5 6 7 distance

Figure 5.2: Probability of dependency between instructions in function of distance between
them.

19Parameters of function and local variables. Most often it is a reserved stack area.
20Bump of the probability value for d = 4 in case of Intel x86 processor comes from the recurring pattern of
registers usage generated by choosen compiler.



SECTION 5. OBFUSCATING TRANSFORMATIONS 43

The second property was determined from an experiment, executed on two models of random
programs generation.. Figure 5.3 shows values of probability, that n random instructions taken
from all operations and branches of given processor?! would make a real looking program. The
basic criterion of ”reality” was the same algorithm of measurement of dependencies, occurring
between instructions. It can be seen, that there is rather a little chance to obtain a real looking
program only from random instructions.

dependency
0,2
0151 W X86
01 - S MIPS
0,05 ~EN—IN
N R \
1 2 3 4 5 6 7 distance

Figure 5.3: Probability of construction a real looking program from n randomly selected in-
structions.

Much better results were obtained in a little more complicated model: a condition of de-
pendency between neighbourhood instructions was added to randomness. The next random
instructions will be accepted only, if its execution depends (with dependecy defined by the pre-
sented algorithm) on the previous instruction??. Figure 5.4 shows, that in such an easy way it
is possible to create ”real looking” programs.

The methodology and parameters of experiments are described with details in appendix B.

Results of above analysis in the case of real machines depend hardly on total number of
instructions and number of registers. For not typical architectures above figures can degenerate
a lot (ex. very high probability for random programs).

5.3 Insertion

The easiest way of obfuscation is addition of new instructions, covering the view of the real
control path. These instructions should in some safe way entangled with obfuscated program,
leaving impression of a real program, and they should be generated in possibly fast way.

It can be known from practice (see appendix C), that most of programs do not use in any
moment of execution all available context of a machine. It gives some additional possibilites
during contruction of the general method of insertion. According to theorem 3.3 following
instructions can be inserted:

e any instructions not changing the context in obfuscated program

218pecial instructions were ignored, because they are less frequent in real programs.
22In case when creation of dependecy is impossible, the instruction is accepted in the original form.



SECTION 5. OBFUSCATING TRANSFORMATIONS 44

1dependency

W x86
MIPS

1 2 3 4 5 6 ? distance

Figure 5.4: Probability of creation of "real looking” program from n random and dependent
instructions.

e reversible operations changing the used part of context in obfuscated program

”Any” instructions include any operations, changing not used part of machine context.
Property of using/not using a part of context has local scope, that’s why before we use insertion
a full data flow analysis is required for given part of whole machine context.

Example 5.1 A machine program in assembler of microprocessor Motorola 68000 is considered
in context {(d0,d1,d2,d3)}:

move.w #23,d0 ; do = 23
add.w doO,d1 ; d1 = d1 + do
move.w d2,d3 ; d3 = d2

and was obfuscated by inserting instructions modifying not used part of machine context
{(d4, d5,d6)}*:

move.w #23,d0 ; dOo = 23

sub.w d0,d4 ; d4 = d4 - dO **x*
add.w do0,d1 ; dl = d1 + 40
move.w d1,d5 ; db = d1 *%k
move.w d2,d3 ; d3 = d2

sub.w d3,d6 ; d6 = d6 - d3 **x*

Such a simple insertion make harder analysis of program by a human. The main reason is
that during the analysis a human covers at a time only small pieces of code and only a few paths
of data flow. Adding a lot paths without outlet slows down the process of analysis significantly.

All methods of insertion casue increase of potency of given obfuscation process, because
complexity of obfuscated program grows. There is not such easy dependecy with resilience,

2 New instructions are marked with *%x*.



SECTION 5. OBFUSCATING TRANSFORMATIONS 45

ex. insertion of instructions using only not used part of context does not change resilience
significantly, because these instructions can be removed quite easily using automatic tools.

Insertion of any instruction causes growth of length of obfuscated program. To represent
this growth in the form of number we introduce the rescaling factor S, which can be calculated
from the formula:

T(P

o1
|P|

where |...| returns length of given program in number of instructions. The rescaling factor will

be used during the construction of general algorithm of obfuscation.

5.3.1 Simple insertion

The simple insertion adds any instruction using current information about context in obfuscated
program. Given program P is split into two parts P; and P, between them an instruction Py
is inserted:

P=Py|P,
T(P) = P|P| Py

The programs transform the machine context as follows:

Pl (V) = Vi
PQ(V;[) = V2
Pr(vr) = v7

If the following condition is satisfied:
S1m ST ={a}

then instruction P; changes not used part of context and can be any instruction of the
machine. If:

simsimSi#{ay A\ Plvi)=wvs
Pfl

then the instruction changes the used part of context of obfuscated program and is an
reversible operation (must be, to make 7 valid obfuscating transformation). Given conditions
can be obtained easily from the theorem 3.3

Example 5.2 Given machine program in assembler of microprocessor Intel 80386 considered
in context {(eax,ebx,edx)}:

mov eax,10 ; eax = 10

add ebx,eax ; ebx = ebx + eax
sub edx,eax ; edx = edx - eax
mov [esi],ebx ; [esi] = ebx

is obfuscated with simple insertion:



SECTION 5. OBFUSCATING TRANSFORMATIONS 46

mov eax,10 ; eax = 10

xchg eax,ebx ; eax <-> ebx *kk
add eax,ebx ; eax = eax + ebx

sub edx,23 ; edx = edx — 23  xkx
sub edx,ebx ; edx = edx - ebx

add ebx,42 ; ebx = ebx + 42  xk*
mov [esi],eax ; [esi] = ebx

After fast analysis it can be seen, that context was not changed, but values of output context
were changed from {(eaz, ebz,edz)} to {(ebx, eax + 42, edx — 23)}. Using three operations we
can restore the original values:

xchg eax,ebx ; eax <—-> ebx
sub eax,42 ; eax = eax - 42
add edx,23 ; edx = edx + 23

Insertion of reversible operations increases resilience of obfuscated program, but it is not
a critial change for potencial autiomati unobfuscator. Removal of effects of simple insertions
is made by detection in data flow graph a paris of operations with preseved tracing of control
flow. The method is not complex computationally.

5.3.2 Complex insertion

In general into the group of transformations called complex insertion fall all transformations,
which during the obfuscation process use not only information about context usage, but also
use its semantic — what a particular instruction does mean. It is possible to create almost any
amount of such transformations ([25], [72]), because information included in a program can
be interpreted in many different ways. From our formal point of view complex insertion is a
modification of instructions of obfuscated program or simple insertion of programs not changing
not used part of context only. Marking as in the simple insertion:

P=Py|P,
T(P) = P|P| Py

and

it is required the following condition to be satisfied:
S1m St ={a}

while in case of complex insertion the program P; consists most often of few or a dozen of
instructions.

Sample methods of complex insertion (taken from [25]) can be described with the following
action:

e exchange of equivalent fragments of a program — requires a little bit more detailed analysis
of the program and some knowledge database, containing equivalent sequences; during
exchange the context can be modified only in a reversible way



SECTION 5. OBFUSCATING TRANSFORMATIONS 47

e extension of conditions — in case of conditional branches it is possible to extend the
conditional expression and add some redundant conditional jumps

e loop unrolling — a short loop with constant counter n can be substituted with unrolled
n-times body of the loop

e code specific insertion — ex. jump into the middle of an instruction code, which can
be beginnig of a code of totally different instruction (possible in Intel 80386 processor’s
assembler)

e environment specific insertion — ex. a sequence of instructions detecting presence of a
debugger into the system

e insertion of ”virtual machines” — simple synchronous state automaton, which control
sequence execute encoded program (implementation of automaton must be included)

e insertion of opaque constructs — special fragments of programs, which are computationally
difficult to identify and remove (described with details in the next section)

The most efficient method of complex insertion, which has highest resilience, is insertion of
opaque contructs, that’s why it was described in the speparate section.

Example 5.3 Given machine program in assembler of Intel 80386 processor is considered in
context {(eax,ebx,ef)}:

mov eax,0 ; eax = 0
add ebx, [esi] ; ebx = ebx + [esi]
cmp eax,ebx ; eax = ebx 777
jz jump ; yes => jump
was obfuscated with the following result:
sub eax,eax ; eax = 0
mov edx,eax ; edx = eax * %ok
add ebx, [esi] ; ebx = ebx + [esi]
cmp  eax,ebx ; eax = ebx 777
jz  Jjump ; yes => jump
cmp  eax,edx ; eax = ebx 777 * %k
jnz never ; No => never *okok

which uses extended context {(eax,ebzx,edz,ef)}. It can be seen, that obfuscation inserted
the additional condition, which will never be satisfied, so the second jump will never occurr. A
typical trick is also substitution of load of value zero, by substraction of the register from itself.

Depending on its type, complex insertion increases resilience of obfuscated program in dif-
ferent way. Efficiency of exchanging of equivalent fragments and loop unrolling is similar to
efficiency of insertion of instructions changing not used part of context. Slightly better is in
case of extending branches conditions, where full removal of inserted code required complex
optimizing analysis.

Example 5.4 Given two instructions of Intel 80386 processor’s assembler:



SECTION 5. OBFUSCATING TRANSFORMATIONS 48

1000 8B 06 mov eax, [esi] ; eax
1002 83 CO 04 add eax,10 ; eax

[esi]
eax + 10

were obfuscated by inserting instructions specific for the code of given machine:

1000 8B DA mov ebx,edx ; ebx = edx *ok ok
1002 8B 06 mov eax,[esi] ; eax = [esil]

1004 43 inc ebx ; ebx = ebx + 1 *k*x
1005 3B DA cmp ebx,edx ; ebx = edx 777 k¥
1007 75 01 jnz 1010 ; no => 1010 *kk

1009 E9 83 CO 0OA 90  jmp O900ACO83H ; add eax,10  *%x*

The second instruction of source program was put as the address of jump, which will never
be executed (90H code is a ,nop” instruction — do nothing, required to fill up the code of jump
instruction). This is the simplest technique of hiding real instructions against disassebling
programs.

Insertion showed in the above example is easy to detect by a human, becasue of the specific
of inserted code. Yet the big advantage for these types of insertion if high resilience for auto-
matic analysis. The resilience comes from the must of creation of special algorithms detecting
particular type of inserted code.

5.3.3 Opaque Constructs

Unfortunately program obfuscated in the easy way, based only on reversible changes in the
context and extensions of context, can be quite easy unobfuscated. The method can protect only
against "manual” analysis. Yet using automatic analysis one can remove almost all redundant
code. The solution improving efficiency of obfuscation is including of so called opaque constructs,
a specific pieces of code, not entangled with the main context of obfuscated program (but
optionally using this part of context). The specific property of these pieces is that automatic
detection of them is possible only with use of computationally very complex algorithms.

The idea of opaque construct was introduced for the first time in [26], where the definition
was given.

Definition 5.2 Opaque construct in the point p of a program is the variable V' or a fragment of
programu P, which value of result of calculations is well known during the time of obfuscation,
but is very hard to determine after obfuscation®®.

If the variable V in the point p has always value 5, it is written as Vp:5. If the value is
unknown, as Vp?.

Example 5.5 Into the given program of Intel x86 processor considered in the context {(eax,ebx)}:

mov eax, [esi] ; eax = [esi]
add eax,ebx ; eax = eax + ebx
mov [edi],ebx ; [edi] = ebx

an opaque instruction was inserted:

24 Hard in the sense of computational complexity.



SECTION 5. OBFUSCATING TRANSFORMATIONS 49

mov ecx,32 ; ecx = 32

mov eax, [esi] ; eax = [esi]

add eax,ebx ; eax = eax + ebx

mov edx,ecx ; edx = ecx = 32

shl ecx,3 ; ecx = 32<<3 = 256

and ecx,edx ; ecx = ecx AND edx (V0
add eax,ecx ; eax = eax + ecx = eax
mov [edi],ebx ; [edi] = ebx

As the result of execution of the opaque construct, to the element eazx value 0 will be always
added. This type of opaque construct is of course trivial, but it still requires full static analysis
of the obfuscated program to do removal.

Opaque construct can be used in very different ways. In the above example result of the
operation in contruct became the additional argument of an expression. In the same way any
expression or condition can be extended. Using construct as a independed condition a redundant
branch can be inserted (jump when the condition is always true) or hide the real code behind
a conditional jump (always false).

In the same paper ([26]) a general solution of creating of opaque construct was given. The
constructs have high resilience and their removal requires use of exponentially complex algo-
rithms (or even more complex). The solution uses weakness of present algorithms of pointer
alias analysis problem ([32], [12]) and looks like this:

Solution 5.1 Creation and implementation of an efficient opaque construct:

1. Add to the obfuscated code a fragment, creating set of complex dynamic structures S1, S, ....
2. Store a set of pointers pi,ps, ... in these structures.

3. Insert into the obfuscated program a code, updating from time to time these structures
(modifying pointers, adding nodes, binding and spliting structures, etc.), but preserving
some particular properties, conditions specific for the set of pointers p1, pa, ..., which have
always the same logic value, ex. ,p1 never uses the same area of memory as p2” or ,there
is always a path from p1 to pa”, ete.

4. Use these conditions, whenever you want to insert opaque construct, making appriopriate

condition
values V;)ariable

The solution is very attractive because of the following reasons:

e inserted code does not differ from the code of most present programs (mass use of struc-
tures and pointers)

e it is easy to create methods of structure’s updating, impossible to analysis for present
algorithms, [26]

e it is easy to create simple (cheap) conditions (ex. comparison of two pointers)

The main disadvantage of this solution is high-level approach to any program (concept
of structure) and use of system services during execution (operations on memory heap during
dynamic management of structures). The way this solution works is shown in the below example

([26]):



SECTION 5. OBFUSCATING TRANSFORMATIONS 50

Example 5.6 An object O was created, which consists of three fields:

Name of field token ptr 1 ptr_2
Descirption TRUE or FALSE | pointer to O | pointer to O

On the beginning of the obfuscated program a fragment creating two separated groups of
objects O: structures G and H (figure 5.5). Three pointers f, g and h were added to global
variables, pointing to one of objects in structures: f, g in G and h in H.

Figure 5.5: Example of binding structures od some objects, creating base for opaque constructs.

Three operations were defined on the structures G, H:

e Join(f,g) — joins two structures, pointed by g, h
e £=Split(g) — splits the structure pointed by g, returning to f pointer to separated part

e Insert(f) — inserts a new object into the structure pointed by f, adding it to the present
objects

and one operation on the pointers to O:
e f=Move(f) — move pointer f to the object pointed by the field ptr 1

Using these operations and modifying field token, any number of opaque constructs can be
created. Below three examples are shown.

1. Do any operations on the pointers f, g, h, except Join(f,h)and Join(g,h). We obtain
in such easy way two simple conditions: (f # h)T and (g # h)T.

2. Modify the field token in the object pointed by f, ex. f.token = T RU E, next in the object
pointed by h. These are always different objects, so the change through the pointer

h will never changed the value pointed by f. In this way we can use the condition:
(f.token = TRUE)T.



SECTION 5. OBFUSCATING TRANSFORMATIONS 51

3. Call Join(f,h), next do any operations on the pointers and fields token. We obtain in
this way unlimited number of conditions of unknown value, ex. (f = g)°. These conditions
can be used to insert a neutral code or to copy the original code in two parallel control
paths.

Analyzing examples from the papers [26] and [25], we created a more general methodology
of creation of opaque constructs:

Solution 5.2 General method of creation and implementation of opaque constructs:

1. Create a list of typical constructions present in the source program.

2. Select from the list such contructs, which analysis is most computationally complex during
the process of unobfuscation.

3. Add to the program a new elements, allowing to create opaque constructs.

4. Insert into the obfuscated code opaque constructs according to your needs and constructs
found on the list.

Using this method once can create opaque constructs staying on the low-level of program-
ming. It is demostrated in the following example:

Example 5.7 Given program was examined and it was determined, that some of its functions
are called very often during the execution by lot of other functions, with different values of input
parameters, but with known ranges.

Function Ranges of parameters

Func1(a,b) a=1,2,..,255 b=0,1,....,5

Func2(a,b,c) |a=1,2 b=32,33,...,127 ¢=0,1,...,65535
Func3(a) a=0,2,3,6

Adding few global variables aa, bb, cc, ..., we can make new resilient opaque constructs.?’
Into the function Func2(a,b,c) we can insert for an example the expression bb = (a + b + ¢)
AN D bb, which value will be always less than 100000. Much stronger resilience can be achieved
by inserting some dependencies between functions:

aa =bb OR b OR a — into the function Funci(a,b)
bb = ((cc+a)— (bxc)) AND aa — into the function Func2(a,b,c)
cc=a+ (aa+ bb) x 2 — into the function Func3(a)

Assuming, that all global variables will be initialized with value 0, we can calculate, that
variables aa and bb will never be greater than 255 and variable cc will be never greater than
1030%°. Knowing the rule of creation of such expressions one can create any number of them
without any problems.

If we make an automatic method of generating opaque constructs of some type (like in the
example above), then having algorithm of creation, it would be easy to write specific algorithm
detecting only these type of opaque constructs. It can be seen, that opaque constructs are

25 Global variables in this case add requirement of full analysis of interprocedural dependencies for data and
control paths.
26We assume, that we have full control of the values of variables, even in case of invalid input data.



SECTION 5. OBFUSCATING TRANSFORMATIONS 52

encryption keys of obfuscating algorithms. To provide most efficient method of obfuscation, the
key and methods of its generation should be kept secret and be as individual as possible.

High resilience of opaque constructs on the methods of static program analysis does not
guarantee high resilience on methods of dynamic analysis. A simple check, that a condition
in program during multiple execution has always a constant value, can suggest existence of an
opaque construct in this place. This problem can be solven in a few ways. They were described
in the paper [26]. In general adding dependencies between different opaque constructs can be
very helpful in this case. Appropriate dependencies will require, that proper run of obfuscated
program could be possible only after removal of all inserted opaque constructs in the single step.

The important factor, increasing the quality of opaque construct, is its uniqueness. In
the perfect case such a construct should be created by the programmer, author of obfuscated
program. The nature of opaque constructs allows to satisfy this requirements, because the only
limitations to the form of an opaque construct are in the technical parameters of the machine or
used software environment?” and in the imagination of creator. To create an efficient algorithm
of obfuscation it would be good to create a database of opaque constructs, which could be used
by the algorithm in some given way.

Example 5.8 Given program in the assembler of Motorola 68000 processor considered in the
context {(d0,d1,d2,d3,CCR)}:

move.w d0,d1l ; d1 = do

add.w d2,d1 ; dl = d1 + 42

beq jump ; d1 =0 7, yes => jump
sub.w d3,d1 ; dl = d1 - d3

and the opaque construct defined by the formula:

aa = (aa +bb— X) AND cc
where :
aa, bb, cc — global variables of integer type
X — any integer number
and :

aa >0 is always true

which was inserted into the obfuscated program. As the result following machine program was
obrained:

move.w d0,d1 ; d1 = do

move.w aa,d4 ; d4 = aa * %k
sub.w d1,d4 ; d4 = d4 - dil *%k
add.w d2,d1 ; dl = dl - d2

beq jump ; d2 = 0 7, yes => jump
add.w Dbb,d4 ; d4 = d4 + bb *%k
sub.w d3,d1 ; dl = dl - d3

and.w cc,d4 ; d4 = d4 AND cc *kk
add.w #31,d4 ; d4 = d4 + 31 * kK
blt jump ; dd < 0 7, yes => jump **x*

>TIn most cases highly redundat comparing to the needs.



SECTION 5. OBFUSCATING TRANSFORMATIONS 53

working in the extended context {(d0, d1,d2,d3,d4, CCR)}, in which the jump ,blt jump”
will never be executed. In practice the inserted opaque construct is also obfuscated by use of
other techniques.

Opaque constructs are the main tool to increase resilience of an obfuscated program (chapter
5.3.3). It is implied from their constructions and high computational complexity of removing
programs. Similar to other methods of insertion we observe increase of potency of obfuscated
program, propotional to the number of inserted instructions.

5.4 Reordering

The second simplest method of code obfuscation is the reordering of program’s fragments. In
opposition to insertion, the goal of reordering is not to change the context of a program, but
to disturb original sequence of execution. If reordered fragments are short, independent from
themselves, no more changes are inserted into the program. In case of longer fragments, addidion
of jumps organizing correct sequence of execution is required. The best effect is achieved, when
this jumps are conditional, with constant control flow.

Example 5.9 Given program in the assembler of Motorola 68000 processor:

move.w #10,d0 ; dO0 = 10
move.w (al),d1 ; d1 = (a0)
add.w di1,d2 ; d2 = d2 + di
add.w d0,d3 ; d3 = d3 + dO

was obfuscated by instructions reordering;:

move.w (al),dl ; dl = (a0)
move.w #10,d0 ; d0 = 10
add.w d0,d3 ; d3 = d3 + dO
add.w di1,d2 ; d2 = d2 + di

which did not change the overall look of the program. Advantages of this method can be
seen by longer programs, when distance between exchanged instructions are longer.

Example 5.10 Given program in the assembler of Motorola 68000 processor:

move.w (a0),do ; d0 = (a0)
move.w (al),dl ; d1 = (al)
add.w d2,d0 ; dO = dO0 + d2
add.w d3,d1 ; dl = d1 + d3
muls d4,do ; dO = d0 * d4
muls d5,d1 ; d1 = d1 x db

was obfuscated with blocks reordering:



SECTION 5. OBFUSCATING TRANSFORMATIONS 54

bra labil ; => labl
lab2:

add.w d3,d1 ; dl = d1l + d3
lab4:

muls d4,do ; dO = dO x d4

muls d5,d1 ; dl = d1l * d5

bra 1lab3 ; => lab3
labl:

move.w (al),do ; do = (a0)

move.w (al),dl ; d1 = (al1)

add.w d2,d0 ; dO = dO + d2

bne lab2 ; dO = d2 7, no => lab2

add.w d3,d1 ; dl = d1l + d3

bra lab4d ; => lab4d
lab3:

which slowed down the process of analysis of this program. Together with insertion of
jumps a local code replication is used. Use of this technique with different methods of insertion,
by increasing the size of obfuscated program few times, can make analysis of correct path of
execution very difficult.

In the formal way blocks reordering is described by transformation:

P = Pl‘Pg - T(P) = J1|P2‘J2‘P1|J3

where instructions Ji, J2, J3 are unconditional branches or empty programs, if P} i P, satisfy
conditions given in the section 5.1. Applying 7 (P) on the obtained programs we get:

Tr(P) = T(T(...T(P)))

which is the final reordering transformation. Knowing the number of instructions inserted
during reordering we can calulate the empirical frequency of blocks reordering Rp:

TPl
=5

where by |...|g we mean the number of instructions inserted during the reordering. For an
example Rp = 0.1 means, that on average after every tenth instruction of program P there is
reordering instruction in the program 7 (P). Coefficient Rp will be used as the input parameter
of the general algorithm of obfuscation.

Reordering does not change significantly analytical measures of quality of an obfuscation
process. With use of automatic analysis it is possible to remove all inserted jumps in an easy
way. Yet a special software is still required (no common tool is known so far).

5.5 Data Obfuscation

Data obfuscation as presented in papers [25], [26], does not exist in the proposed formal analysis.
Yet elements of data obfuscation are present in the implementation in a limited scope.

Example 5.11 Given program in the assembler of Intel 80386 processor, which is a fragment
of bigger procedure, having some variables stored on the local stack, pointed by the value of
register ebp:



SECTION 5. OBFUSCATING TRANSFORMATIONS

mov eax, [ebp+4]

add eax, [ebp]

mov [ebp+8],eax

inc dword ptr [ebp+4]

3
b
3

3

95

eax = [ebp+4]
eax = eax + [ebp]
[ebp+8] = eax

[ebp+4] [ebp+4] + 1

The size of all variables is equal to the size of register eax (4 bytes). Given program was
obfuscated in the context {(eax, ebp, [ebp], [ebp + 4], [ebp + 8])}:

Xor eax,eax

or eax, [ebp]

xchg eax, [ebp+4]

mov [ebp],eax

add eax, [ebp+4]

mov [ebp+12],eax

inc dword ptr [ebp+4]

)

eax = 0 KoKk
eax = eax OR [ebp]

eax <-> [ebp+4] *okok
[ebp] = eax Kok ok
eax = eax + [ebp+4]
[ebp+12] = eax

[ebp+4] = [ebp+4] + 1

After obfuscation the context was changed to {(eax, ebp, [ebp + 4], [ebp], [ebp + 12])}, so the
typical technique of obfuscation was used: data reordering. The data obfuscation was gained
through addition to the context some fields from the local memory. Because of the technical
reasons only addition of local memory makes sense (most often it is stack), which holds usually

arguments of call and local variables.

In opposition to registers of a processor, which are purely static resources, local memory can
be extended with some reasonable limits, adding new elements of context allowing to efficiently

obfuscate and manage data.

5.6 Summary of Theoretical Background

From the present theoretical background the following conclusions can be drawn:

e adding partially chaotic code into a program and changing a context, we get good method
of protection of program code against analysis by human, but less resistant to analysis

with automatic methods

e insertion of opaque constructs into the obfuscated code protects it well against automatic
analysis, but not always protects against analysis by human

o cfficient method of obfuscation must use at the same time modification of context and

insertion of opaque constructs

The way of concatenation of changing context and inserting opaque constructs is not de-
termined. It can be done in some different ways. It is quite sure, that an obfuscation process
without one of these elements, would give a weak protection of programs.



Section 6

Algorithm of Obfuscation

NOWING the two basic elements: obfuscating transformations and results of research on

the stucture of typical programs, an universal method of creation of algorithms of obfus-
cation working on the machine code level can be given. Using this method a sample algorithm
of obfuscation was designed and implemented for two typical machines having different archi-
tecture. It was used next for quality tests and analytical measures.

6.1 Algorithm Creation Method

Summarizing the analysis of problem of code obfuscation on the machine level we can assume,
that the whole process can be reduced to the four activities (chapter 5.1):

e reordering of program’s instructions
e reordering of blocks of the program
e exchange of equivalent fragments of the program

e inserting of an additional code

All presented activities are mutually independent, which does not mean, that change of
execution order can give the same final result in the form of identical obfuscated code. Yet it
means, that as the result of any activity we get a program, we can be input for any one of them.

If we mark all activities with capital letters (table 6.1), then a sequence of such letters will
describe scenario of obfuscation. For an example the scenario S.C.I.R. means obfuscation with
all four activities and scenario I.1.1. triple obfuscation with insetion of an additional code only
(not always with the same parameters describing the internal work of the activity).

Table 6.1: Symbols of activities of code obfuscation.

| Activity | Description |
insructions reordering S swap
exchange of fragments C change
insertion of additional code I insert
blocks reordering R reorder

56



SECTION 6. ALGORITHM OF OBFUSCATION 57

6.1.1 Instructions Reordering

Instructions reordering is an easy technique of obfuscation, which changes the sequence of
execution of instructions not depending on eachother. Such general definition allows to move
even the whole groups of instructions, that’s why it is assumed additionally, that this kind of
reordering cannot insert any instruction into the obfuscated program (chapter 5.4).

Example 6.1 Given program in the assembler of Intel 80386 processor:

mov ecx, [esi] ; ecx = [esi]
cmp eax,ebx ; eax = ebx 777
jnz  jump ; no => jump
mov edx,1 ; edx = 1
jmp cont ; => cont

jump:
mov edx,2 ; edx = 2

cont:

was obfuscated with instructions reordering:

cmp  eax,ebx ; eax = ebx 777
mov ecx, [esi] ; ecx = [esi]
mov edx,2 ; edx = 2
jz  jump ; tak => jump
jmp cont ; => cont

jump:
mov edx,l1 ; edx = 1

cont:

It can be seen, that reordering allows to modify some instructions (the conditional jump),
but the total number of instructions remained unchanged.

The above example shows, that in general instructions reordering is not quite trivial. The
easiest implementation of this part of obfuscating algorithm is to find such pairs of instructions,
between which (on the base of condition from chapter 5.1):

e does not occurr dependencies of type ,previous writes - next reads”?®

e does not occurr branches

e there is no instruction, being destination of a jump?’

More complex algorithms should consider dependencies between groups of instructions
(not only pairs) and possibilities of reordering and changing of conditional and unconditional
branches.

mov eax, [esi]

28 An example of such dependency on the register eax is pair of instructions: add  ebx. eax

29Tt simplifies the algorithm a lot.



SECTION 6. ALGORITHM OF OBFUSCATION 58

6.1.2 Blocks Reordering

In opposition to the instructions reordering, in blocks reordering we allow to insert some ad-
ditional jumps into the obfuscated program. The goal of this type of reordering is to make
analysis of program by human more difficult. It is well known from research [31], that a jump
causes temporal stop of analysis, break of so called flow state in the brain of analyzing person
and requires to move the program to the destination of a jump. In the final result overall
performance of code analysis drops significantly.

More advanced methods could use insertion of conditional jumps, which do not insert a new
meaning to the obfuscated program, because every replicated branch contains exactly the same
part of the program. Obfuscating both replicated branches with different methods and adding
nested jumps can also make analysis much difficult.

Example 6.2 Given program in the assembler of Motorola 68000 processor:

move.w d1,d2 ; d2 = d1l
add.w d3,d2 ; d2 = d2 + d3
beq jump ; d2 = 0 7, yes => jump
move.w d0,d2 ; d2 = dO
jump:
move.w d2,(al) ; (al) = d2

was obfuscated with blocks reordering:

bra jumpl ; => jumpl
jump:
move.w d2,(al) ; (al) = d2
bra cont ; => cont
jump2:
add.w d3,d2 ; d2 = d2 + d3
beq jump ; d2 =0 7, yes => jump
bra jump3 ; => jump3
jumpl:
move.w di,d2 ; d2 = di
bne jump2 ; d2 =0 7, no => jump2
add.w d3,d2 ; d2 = d2 + d3
beq jump ; d2 =0 7, yes => jump
jump3:
move.w d0,d2 ; d2 = dO
bra jump ; => Jump
cont:

After the obfuscation the program became two times longer and the number of nodes in
control flow graph increased sinificantly. The additional instruction of conditional branch ,,bne
skok?2” introduces a fictitious condition, which after further obfuscation with different methods
cannot be removed easily even using automatic methods.

6.1.3 Exchange of Fragments

There is a huge number of algorithms, which can be implemented in many different ways
(table 6.2). Such diversity of implementation comes very often even from the mathematic



SECTION 6. ALGORITHM OF OBFUSCATION

99

transformations (examples in table 6.3). Identifying known fragmens one can exchange them
on an alternative programs. If there are many possible solutions for one often occurring fragment
of an algorithm, a random replacement will introduce some difficulties into the analysis of the
obfuscated program. The full reserve transformation of such inserted fragments requires to
create exactly the same database, like the one used during obfuscation.

Table 6.2: Examples of fragments of programs in the assembler of Intel 80386 processor, which

can be exchanged.

| Program | Alternative |
mov eax,0 XOor eax,eax
mov edx,eax
xchg eax,ebx mov eax,ebx
mov ebx,edx
cm eax,0
i p ’ cdq
jge skok
Xor eax,edx
ne eax
& sub eax,edx
skok:

Table 6.3: Examples of expressions and their alternatives.

| Expression | Alternative 1 | Alternative 2 |
ab + bc a+b+be a+b+c
(a+b)xc—axb|(c—bxa+bxc| (c—a)*xb+axc
sin(a — ) — sin(a) cos(a — 7)

Example 6.3 Given fragment of a program in the assemblerze of Intel 80386 processor:

mov eax,ebx ;
add eax,ecx ;
imul eax,edx ;
imul ebx,ecx ;
sub eax,ebx ;

eax =
eax =
eax =
ebx =
eax =

ebx
eax
eax

ebx *

eax

ecx
edx
ecx
ebx

was obfuscated exchanging the way of calculation of detected expression (we assume that

full overflow occuring analysis was done):

mov eax,edx ;
sub eax,ecx ;
imul eax,ebx ;
imul ecx,edx ;
add eax,ecx ;

eax =
eax =
eax =
ecx =
eax =

edx
eax
eax
ecx
eax

*
*
+

ecx
ebx
edx
ecx

getting the fragment returing in the register eax always the same result.

Realization of exchanging fragments of program requires performing the full control and
data flow analysis, optimizing of obtained structures, next comparing with strucures prepared
on the base of created database. Insertion of changed instructions is a reverse process, allowing
to generate program on the base of matched structures. In addition to matching, in case of



SECTION 6. ALGORITHM OF OBFUSCATION 60

arithmetic operations, obfuscating program must make full analysis of possibilities of overflow
occurences. Also lot of fragments require to satisfy some conditions, applying to the state of
context on the end of obfuscated fragment (chapter 5.1).

6.1.4 Insertion of Code

To the group of activities, described with single name ”insertion of code”, we classified three
methods inserting code into the obfuscated program (chapter 5.3):

e insertion of any instructions changing not used locally part of context
e insertion of reversible operations changing the used part of context

e insertion of opaque constructs

The main property of these methods is ability of making decision about the insertion only
on the base of information about current data flow (context) and analysis of small program
fragment (2-3 instructions). Information about local context is required, because inserted in-
structions cannot damage the source program.

The problem of efficient analysis of data flow was described in many books about construc-
tion of compilers and the example of creation of fast algorithm can be found in [61], page 244.
Implementing such an algorithm we get full information about local context in the obfuscated
program.

Example 6.4 Given program in the assembler of Intel 80386 processor, was given to data flow
analysis to get information about local context context {(eax, ebx,ecx,edzr,ef)}:

| program || ear | ebx | ecr | edx | ef |

mov eax,10 O X X

mov ebx,20 X O X X

add eax,ecx X X X X |10
sub ebx,edx X X X |10
cmp eax,ebx || X | X O
jnz  jump X X
add eax,30 X O

jump:

mov ecx,eax || X O

mov edx,40 X X O

sub edx,ecx X X X |10

The fields descibing current state of an element of context have the following meaning:

e O — a new value is transferred into the element of context
e X — an element of context holds a value important for the program

e empty field — an element of context is not used currently by the program

Two variants of represention of information about local context are possible: state of context
after of before execution of given instruction (example above). In the variant ”after” there are
two possibilities of code insertion changing value of an element without a disturbance:



SECTION 6. ALGORITHM OF OBFUSCATION 61

e if the element is described by an empty field, additional code can be inserted before and
after current instruction

e if the element is descirbed by the field ,,O0”, additional code can be inserted only before
current instruction

Example 6.5 Into the fragment of program from the previous example:

mov eax,10 ; eax = 10
mov ebx,20 ; ebx = 20
add eax,ecx ; eax = eax + ecx

some additional instructions chaning not used part of context were inserted:

add eax,ecx ; eax = eax + ecx *kk*k
add ebx,ecx ; ebx = ebx + ecx kkx
mov eax,10 ; eax = 10

sub ebx,eax ; ebx = ebx - eax *x*x
mov ebx,20 ; ebx = 20

add eax,ecx ; eax = eax + ecx

The final result of such insertion is frequent disturbance in attention of a person analyzing
the correct control path of a program, which causes significant slow down of the analysis process.

In the similar way, using information about local context usage, we implement insertion
of reversible operations on the used elements and insertion of opaque constructs. The general
methodology of implementation of such methods was described in the previous chapter.

6.2 Sample Algorithm of Obfuscation

On the base of presented method a sample algorithm of obfuscation was created, which is
designed to work on COSH machines (in Treleaven’s classification), which are most of present
computers. Two methods of obfuscation were selected for direct implementation: insertion I
and blocks reordering R, because these two have the greatest influence on the quality of the
obfuscation process.

Similarly like in [72] the whole program was treated as a set of procedures, where inter- and
intraprocedural obfuscation can be distinguished. Sample algorithm is a solution for obfuscation
of procedures only actually protecting small fragments of programs.

6.2.1 Entry Assumptions

To precisly describe the area of application of sample algorithm some entry assumptions were
made:

e the input of the algorithm is a high-level programming language single function or sub-
routine of low-level programming language, given in the form of sequence of instructions?’

e the obfuscating context consists of registers of processor and local stack

e for the obfuscated context a full data flow analysis was made (like in the example 6.4)

30Tt is not a critical limitation. Extension of the algorithm on many functions is mostly an engineering work.



SECTION 6. ALGORITHM OF OBFUSCATION 62

e the influence of external calls on the context is known (if such a calls occurr in the function)
e obfuscated program does not contain instructions using elements out of obfuscated context
e only static jumps are present in the program (with hardcoded address)

e output context of the program is a single distinguished register or empty set

e the program does not contain indirect references (using pointers) to the local data, stored
on the stack

e the following parameters of the algorithm are given:

1. Rescaling factor — how much the output code must be longer than input code3!:

S>1

2. Frequency of reordering — how often a block reordering must be done, Rp:
0<Rp<l1

3. Logic flags of code insertion: instructions changing not used part of context I,
reversible operations Ip and opaque constructs Ip (zero means no insertion):

INa IDv IO € {07 1}
4. Flag of occurrence of dependecies in instructions changing not used part of context:
IZ € {07 1}

Parameters S and Rp come from the theoretical analysis of insertion (section 5.3) and re-
ordering of instructions (section 5.4). Remaining parameters were added for additional experi-
ments. The ability of switching on/off particular types of code insertion allowed to empirically
check the influence of given method on the final shape of the obfuscated program (chapter
6.4.1).

If the input of the algorithm will be a sequence of instructions dj instructions long, then
after obfuscation we should get a sequence long about dp = S X dj instructions (inaccuracy
comes from the integrity of opaque constructs, which usually are longer then one instruction).

6.2.2 Basic Elements

The table 6.4 shows the global objects used by the sample algorithm, required by the way it
works.

The algorithm itself consists of the initializing part, main loop, finishing part and a set of
auxiliary functions. The most importatnt auxiliary function in a subroutine doing full analysis
of context (already mentioned data flow analysis) and a procedure balancing context according
to given reversible operations.

Example 6.6 Given context of the place of branch {(ebx, eax —10, ecx +ebx, edr+20)} and the
instruction ,add ebz,ecz”, required the original context {(ebx,ecx)}. The procedure of context
balancing returned the following program:

31 The upper limit depends on the implementation (available resources).



SECTION 6. ALGORITHM OF OBFUSCATION

63

Table 6.4: Global objects used by the algorithm of obfuscation.
| Object | Type | Contents
Lg list addresses of jumps ”forward”
Lo list operations executed on the current context
N int number of instructions in the source program
Np int number of reordered blocks
M int current number of instructions in the obfuscated program
Np int current number of obfuscated instructions of source program

xchg eax,ebx ; eax <-> ebx

sub ecx,ebx ; ecx =
add ebx,ecx ; ebx

ecx - ebx
ebx + ecx

The easiest method to balance a context is to reverse all operations executed on the source
context and insert all operations performed on the destination context. It is not an optimal
solution, because it is not always required to reverse all operations and it is sometimes possible
to bind tow or more operations or even ignore some of them, depending of the instruction

requirements.

6.2.3 The Structure of the Algorithm

The initialization of the code obfuscation algorithm consists of the following steps:

e assignment of the start values to the gloal objects: to numbers Np, M, Nj, value 0; to
lists Lg, Lo meaning ”"an empty list”; to number N value equal to the number of all
instructions in the source program

e obtaining the base address and allocation of some additional local variables (data obfus-

cation)

e allocation of memory for the obfuscated code

e execution of the data flow analysis (calculation of the local context "usage” for every
instruction in the source program)

e starting the main loop of the algorithm

The construction of the obfuscation algorithm’s main loop is base on the theorem 3.4,
allowing to obfuscate the source program step by step. There are some actions in the algorithm
which need a comment:

1. The parameter S says how many additional instruction should be inserted. In the al-
gorithm, which processes a single instruction at a time, the value of this parameter is
translated onto a condition of insertion, saying if we should or should not insertd in the
given moment of obfuscation process. The condition, marked as C7, has the form:

Cr=(M < N;rxS)

As long as Cf is true the algorithm uses insertion. Every inserted instruction increases
the value of variable M. If the inserted instruction is a reversible operation, information
about the insertion is added to the list Lo, to make reverse action possible.



SECTION 6. ALGORITHM OF OBFUSCATION 64

2. Usage of blocks reordering in the algorithm of obfuscation working instruction by instruc-

tion requires to create a condition, saying if in the given step a reordering must be done
or not. In the simplest case the condition uses the current number of inserted reorderings
and has the form:

During execution of reordering at least one instruction is inserted (a jump), that’s why in
addition the condition C7 should be checked as well. As long as C; and Cg are true, the
algorithm should make reordering.

During the obfuscation of the source program there are moments, when two control paths
gather in the single instruction. Because of separate obfuscation of these two paths, they
have different output contexts. Using the context balance procedure will make contexts
the same, making correct input context for the next instruction of the obfuscated program
(see example 6.6). Without context balancing we would observe the effect shown in the
example 3.7. In case of machine programs obfuscation gathering of two control paths can
occurr when:

e a jump occurred from the part already obfuscated to currently obfuscated instruction
e reversible operations were made on the input context of current intruction

e current instruction is a jump into already obfuscated part

. It can be implied from the previous point, that the obfuscating algorithm must manage

all jumps occurring in the source program, heading from the processed part into already
obfuscated part. To store these jumps we created the list Lg. Unconditional jumps must
be treated in a special way, because they do not pass context into the next obfuscated
instruction (all other instructions do it). In the final effect the whole obfuscated context
must be canceled, what is done be emptying of the list Lo.

Algorithm 6.1 Given source program and structures prepared during initialization execute all
steps of the algorithm’s main loop, shown on the figure 6.1.

1.

If conditions Cr and Cy are true, do blocks reordering, for an example changing randomly
the destination address to random number form the range 0...N x S.

If there are any jumps on the list Lg to the current instruction, for every jump generate
on the base of list Lo a code balancing the context from the place of jump, to the current
context, then remove the jump from the list Lg.3?

Balance context to the original shape (if obfuscated instruction needs it), by reversing all
operations from the list Lo, which are connected with the context of the instruction.

. If the current instruction is a jump “backward™?, balance context from the form made by

operations from the list Lo, to the shape stored in the destination place of the jump.

If the current instruction is a jump “forward”*, add it to the list Lg.

32The optimal algorithm of context balancing depends on implementation.
33To the already processed address.
31To the address, which is not processed yet.



SECTION 6. ALGORITHM OF OBFUSCATION 65

6. Store current contents of the list Lo, to make possible context balancing in the next steps
of obfuscation.

7. Copy current instruction to the destination program.

8. As long as the condition Cf is true, insert additional instructions into the destination
program (described in the next section).

9. If the copied instruction was unconditional jump, remove all operations from the list Lo.

More precise description of steps executed by the algorithm requires some references to
properties of used architecture and a choosen implementation of the algorithm. Because of low
scientific value such description was omitted.

The main loop of the algorithm is executed sequentially for every instruction of the source
program. The algorithm finishes by execution of the final part, consisted of the following steps:

e calculation of the real size of obfuscated program

e insertion in the empty cells of the destination program, which remained empty between
reordered blocks, a randomly generated code, to make direct analysis after a dissassembly
more difficult

The correctness of the algorithm was prooved in the following theorem:

Theorem 6.1 Transformation of a program Ps into a program Pp, made by the algorithm 6.1
s an obfuscating transformation.

Proof. On the input of the main loop the program Pg can be treated as a concatenation
of the already obfuscated part Ps; and not yet obfuscated part Pso = (I, Int1, Int2, - IN):

Ps = Pg1|Ps2

Let program Pp be current result of the obfuscation process (obfuscated part of Ps1)3°. Let
program Pop contain all added so far reversible operations, stored on the list Lo, and program Py,
operations reversing the effects of insertions of instructions from Pp. Let 7 be an obfuscating
transformations representing transformation from the algorithm 6.1. Thus in the given moment
of obfuscation:

T(Ps1) = Pp

so changes in program Pp must satisfy conditions of definition of obfuscating transformation.
The algorithm was divided on many steps, which are separate obfuscating transformations?®.

The steps of the algorithm do following transformations of the program Pp:

1. The block reordering in the proposed solution consists of insertion of an unconditional
jump:

Pp == Pp|Jp

35 0n the beginning of the obfuscation process Ps; and Pp are empty programs.
30 Because they take a program on the input, and put an obfuscated program on the output.



SECTION 6. ALGORITHM OF OBFUSCATION

reorder

iz there
anext

instruction
?

END OF LOOP

Figure 6.1:

h

blocks

any jump
into the current
address 7

balance context for the current
instruction

balance context

| from the place of jump

is current

balance context to the
destination of jump

Wforward”
jump?

NO

instruction a YES
Wbackward”

jump ?

ig current
instruction a &.

copy instruction
store current context

store the jump and its
destination in an array

can we
apply

ingertion
?

ingert additional
instructions

iz instruction
a non conditional
jump
o

clear the list of
reversible operations

The main loop of the algorithm of code obfuscation.

66



SECTION 6. ALGORITHM OF OBFUSCATION 67

and optionally any program, skipped by the inserted jump:
Pp := Pp|P

The inserted jump does not change the context of obfuscated program, so the transfor-
mation according to the theorem 3.3 is obfuscating transformation.

2. Balancing of context from the place of jump from the list Lg in the simplest implemen-
tation (shown in the example 6.6) is the addition of program P}, and program Pg, which
is the program Pp stored in the place of jump:

Pp = PD\P(’3|P5
and after the addition:
Py = Pg

because all operations from the original Pp were canceled. According to definition 3.11
and lemma ?7 given transformation is obfuscating transformation (the context is balanced
and equivalence is preserved).

3. Balancing of the current context to the input context of Pgs in the general case can be
reversing of all inserted reversible operations:

Pp := Pp|P}

Yet in practice we insert only these operations, which modify the part of context used by
the first instruction of program Pgy (instruction I,,). Every inserted operation is removed
from the program Pp. The step uses conclusions from the theorem 3.4, described in the
example 3.7.

4. The execution of this step is the same as execution of step number 2.

5. The program Pp is not changed, only the program Py is stored and the destination
address on the list Lg.

6. Step does not change the program Pp.

7. After execution of steps 2 — 4 the input context of program Pgs was balanced, so in the
simplest case in this step we add instruction I, to the program Pp:

Pp = Ppll,

Obfuscated part of the context preserves conditions, allowing to treat this step as an
obfuscating transformation (thanks to the remaining part of the program Fp).

8. Independently from the kind of used insertion (details in the next section) this transfor-
mation is only an addition of some instructions:

Pp := Pp|Py
If a reversible operation is inverted, it is added to the program Pp as well:
Po := Pol|Pr

Correctness of such transformation was shown in the chapter 5.3.



SECTION 6. ALGORITHM OF OBFUSCATION 68

9. Does not change the program Pp. The only effect of this step is removal of all instructions
from the program Pp.

After finishing of the obfuscation process Ps; = Pg, thus we have:
T(Ps) = Pp

which means that the program Pg was obfuscated to the form Pp according to conditions of
definition of obfuscating transformation. m

6.2.4 Insertion of Instructions

Before insertion of instruction we must choose, which kind of insertion should be applied.
From the different variants of choosing we propsed a random drawing, which can make even
distribution of all methods of insertion in the obfuscated program. The particular algorithms
of insertion consist of the following steps:

1. Insertion on the free elements of context — done, if Iy = 1.

e draw a not used element of context
e draw an instruciton to insert
e draw an additional elements from the whole context (if required)

e if [; = 1, then add dependency between last inserted instruction of this kind and
currently inserted (if possible)

e add instruction to the program
2. Insertion of reversible operations — done, if Ip = 1.

e draw an used element of context

e draw an operation to insert

e draw an additional elements from the whole context (if required)
e add the operation to the list Lo

e add instruction to the program
3. Insertion of the opaque constructs — done, if Ip = 1.

e draw a not used elements of context for execution basis
e draw a place of jump from the opaque construct
e draw type of the opaque construct

e insert instructions of the construct, using drawn elements of the context

6.3 Implementation of the Algorithm

The implementation of presented algorithm is a more time-consuming task then a difficult one.
Writing of machine code management procedures (loading and saving), procedures analyzing
data flow, measuring procedures, etc. is required. To obtain good performance we designed
proper data structures, storing all informations needed for algorithm’s run.



SECTION 6. ALGORITHM OF OBFUSCATION 69

6.3.1 Data Structures

In the table 6.5 we put the basic structures used by the implemented algorithm of obfuscation.
The structure INSTR gives all information about instructions, which can occurr in the obfus-
cated program. The structure CONTEL stores temporal data about state and contents of a
context element. The field state can have the following values:

e NOT USED — when given element was not used yet

e VALUE — when given element holds a numeric value (ex. after loading instruction); the
value is present in the param field

e USED — when the element was used and holds an unknown value

e POINTER — the element was used as a pointer to the external memory, not considered
in the analyzed context37

The structure CONTEL gives information about the state of a context element and the list
of structures OPER contains operations, which caused obfuscation of the original context in
the given step of obfuscation. Every operation has its type and arguments, which are usually
numbers or indexes to the table of context elements. The structure ADRJUMP is needed to
analyze jumps ”forward” and the structure ADRMAP is the main structure mapping instruc-
tions from the source program onto places in the obfuscated program and holding data about
their input context.

Table 6.5: Data structures used by the algorithm of obfuscation.

| Name | Field | Contents |

INSTR type type of instruction (operation, branch, special)
opcode | code of instruction
data arguments of instruction

CONTEL type type of context element (register or memory)
state temporal state of the element
param | parameter of the state (ex. value)

OPER type type of operation executed on context
data arguments of operation

ADRJUMP | jump address of jump in obfuscated code

address | destination address in source code
ADRMAP | original | oryginal address of instruction

new new address of instruction (after obfuscation)
oplist current list of operations executed on context
context | current contents of context

The source and obfuscated program are stores as the tables of objects INSTR. Lists Lg and
Lo were substituted with regular tables too, mainly because of simplicity of data manipulation
during the development phase of the algorithm.

3TWe distinguish pointers to avoid using them in reversible operations, which could uncover them easier.



SECTION 6. ALGORITHM OF OBFUSCATION 70

6.3.2 Structure of The Program

The complete program of code obfuscation consists of seven independent modules:

1. Loading of the source program — transformation from the binary or text form into an
array of structures INSTR.

2. Basic analysis of the program — check of parameters and local variables number and
searching for addresses of jumps.

3. Data flow analysis — calculation of the local context for every instruction (array of struc-
tures CONTEL).

4. Optimization of data flow — calculation of the free parts of context (second pass of the
data flow analysis algorithm).

5. Obfuscation of the program — creation of obfuscated program by sequential scanning of
the source program.

6. Analytical measures of the obfuscated program — calculation of complexity measures (po-
tency of obfuscation).

7. Saving of the obfuscated program — transformation of the program from the array of
structures INSTR into binary or text form.

The obfuscation module has the auxiliary procedure of context balancing. This procedure
inserts in the reverse order all reversible operations, which were performed on the given element
of context’s vector, taking into account dependencies from the other elements. The balancing
of context was implemented by execution of this procedure for every element of the context’s
vector and insertion of all reversible operation from the appropriate list.

6.3.3 Comments to the Algorithm

The basic unit processed in the algorithm is an instruction. The natural unit of information for
present computer is a byte, recently mostly a 32-bit long word. In the consequence, rescaling
of the obfuscated program counted in bytes could not be right with the value of parameter S,
given on the input of the obfuscation algorithm.

It can be seen in the implementation, that both source and obfuscated program are stored
in the form of array of structures INSTR. Thus it is possible to obfuscate already obfuscated
program. As the result the program can be obfuscated in the two ways:

e one time, with given values of parameters of obfuscation

e iteratively, with constant or variable values of parameters of obfuscation for every iteration

It is hard to score a priori, which from the possible ways can return a more efficient obfus-
cated program (for the approximately same value of the rescaling factor S). Thanks to multiple
obfuscation of control flow it should be the iterative method, but for sure it is computationally
more complex, because every time we must perform full analysis of data flow.



SECTION 6. ALGORITHM OF OBFUSCATION 71

6.4 Efficiency of the Algorithm

The most interesting parameter of the algorithm of obfuscation is its efficiency — influence of
obfuscation process on the ability to read the correct meaning of obfuscated program. Precisely
this parameter can be measured only with appropriate empirical research (chapter 6.4.3), but
analytical measures add also some information about quality of used obfuscation process.

6.4.1 Reference for Obfuscation Quality Tests

All test programs, presented in the appendix A were measured with three analytical measures
defined in chapter 4. The results are reference base for changes introduced by an obfuscation
process into a program structure. Results of these measurements are shown in table 6.6. Par-
ticular programs have very individual internal structure, which can be seen especially from the
values of measures of length E; and flow Er. The values of measure of length Ej were nor-
malized by division of a defined value by length of the measured program, given as a number
of instructions.

Table 6.6: Values of complexity measures of test programs for Intel x86 and MIPS R4000
Processors.

x86 | x86 | x86 [ MIPS | MIPS | MIPS
Program EL ED EF EL ED EF
HASH 0.88 1 3.0 0.71 2 1.0
MATRIX 0.87 3 4.0 0.74 4 1.9
INSORT 0.88 3 3.6 0.71 3 2.0
BUBSORT 0.90 3 4.7 0.72 4 2.4
MAXARRAY || 0.92 4 4.5 0.62 4 3.5
QSORT 0.94 6 6.7 0.71 7 4.4
SIMPROC 0.88 11 2.4 0.74 14 1.2
IDCT 0.88 6 3.5 0.72 8 4.0
CODETEST | 0.90 4 3.7 0.76 5 1.8
DECODE 0.93 1 7.3 0.74 2 4.3
| Average [ o0 | 4 | 43 [ o072 | 5 | 2.7 |

In case of empirical research as the reference base the average time of analysis by human
of an not obfuscated program was taken. For final research only shorter test programs were
selected. Results of reference data measures are shown in table 6.7. The measures were done
only for programs compiled for Intel x86 processor, because of low popularity of assembler of
MIPS R4000 processor.

6.4.2 Analytical Test Results

Given test programs were obfuscated with three methods, having different values of parameters
controlling the algorithm. As the final result the average potency Ilg for given process of
obfuscation was calculated and shown in tables.

1. In the first method all implemented techniques of code insertion were used:

e instructions changing not used part of context



SECTION 6. ALGORITHM OF OBFUSCATION 72

Table 6.7: An average time of analysis of not obfuscated program by different groups of people.

student | engineer | cracker

Program [h] [h] [h]

HASH 0.21 0.20 0.15
MATRIX 0.33 0.31 0.18
INSORT 0.29 0.30 0.16
BUBSORT 0.26 0.24 0.17
CODETEST 0.27 0.29 0.16
DECODE 0.22 0.19 0.14

| Average | 026 | o025 | 016 |

e reversible operations changing used part of context

e opaque constructs
and following values of controlling parameters of the algorithm were set:

e rescaling factor — 10
e frequency of blocks reordering — 0.2

e dependencies in instructions changing not used part of context — yes

After obfuscation (table 6.8) test programs became more uniform, what can be seen by less
differentiated values of measures of length E; and flow Er, and depth level has increased in
proportion to length of a program (measure of depth Ep). Average potency of programs grew
twice less, than their length.

Table 6.8: Values of complexity measures of test programs after obfuscation with method 1.

x86 | x86 | x86 | MIPS | MIPS | MIPS || x86 [ MIPS
Program EL ED EF EL ED EF HS HS
HASH 8.4 11 3.1 9.1 9 1.0 6.19 | 5.11
MATRIX 8.3 21 3.9 9.2 17 2.1 484 | 4.93
INSORT 8.1 14 4.2 9.2 10 1.7 4.01 | 471
BUBSORT 8.2 18 3.5 9.0 16 2.1 429 | 4.79
MAXARRAY || 8.2 20 4.4 8.9 23 2.7 3.96 | 5.96
QSORT 8.2 80 3.4 9.0 73 1.9 6.52 | 6.85
SIMPROC 8.2 67 3.8 9.1 52 2.0 466 | 4.89
IDCT 8.1 42 3.6 9.0 37 2.0 474 | 4.88
CODETEST [ 84 28 3.4 9.1 20 2.0 4.75 | 4.69
DECODE 8.5 19 3.2 9.1 15 2.1 8.53 | 5.76
| Average | 883 | 32 | 87 || 91 | 27 | 2.0 | 4.89 | 5.17 |

2. In the second method insertion of opaque constructs was skipped, while other methods of
insertion remained:

e instructions changing not used part of context



SECTION 6. ALGORITHM OF OBFUSCATION 73

e reversible operations changing used part of context
and following parameters controlling the algorithm were set:

e rescaling factor — 10
e frequency of blocks reordering — 0.0

e dependencies in instructions changing not used part of context — yes

After obfuscation (table 6.9) test programs became more uniform (relatively to measure
of length Ep), but because of the same number of blocks in the control flow graph, inserted
references to the local data have increased the values of flow FEf measure in proportion to
growth of length of the program. Absence of branches caused, that the depth level (measure of
depth Fp) remained unchanged.

Table 6.9: Values of complexity measures of test programs after obfuscation with method 2.

x86 | x86 | x86 [ MIPS|MIPS |MIPS | x86 [ MIPS
Program EL ED EF EL ED EF HS HS
HASH 7.9 1 28.0 9.4 2 5.5 544 | 5.58
MATRIX 8.1 3 36.9 9.3 4 12.4 551 | 5.70
INSORT 8.0 3 29.0 9.3 3 11.7 5.05 | 5.65
BUBSORT 8.0 3 40.3 9.3 4 13.0 515 | 5.44
MAXARRAY || 8.1 4 35.6 9.0 4 16.9 491 | 5.78
QSORT 8.1 6 60.4 9.2 7 25.9 521 | 5.61
SIMPROC 8.2 11 21.8 9.3 14 8.3 547 | 5.83
IDCT 8.0 6 38.7 9.2 8 22.6 6.05 | 5.48
CODETEST 7.8 4 29.5 9.3 5 10.3 488 | 5.32
DECODE 8.2 1 52.7 9.2 2 28.0 468 | 5.65
| Average | 80 | 4 [ 373 | 983 | 5 [ 155 [ 5.18 | 5.58 |

3. In the third method only insertion of instructions changing not used part of context was
left and following controlling parameters of the algorithm were set:

e rescaling factor — 10
e frequency of blocks reordering — 0.0

e dependencies in instructions changing not used part of context — no

Results of obfuscation with this method (table 6.10) are not significantly different from the
results of previous method. Even bigger uniformity (measure of length Ey) is caused by the
high amount (about 90%) of instructions generated by the same algorithm. Smaller values
of low Er, comparing to the method 2, are result of drawing of arguments in the inserted
instructions, while in the source program local data are usually used more often than registers.

Resilience of obfuscated programs depends strongly on the types of used opaque constructs,
which was shown on the examples in the appendix C. Cost of shown transformations in general
is classified as cheap and empirical measurements determined, that increase of time of program’s
execution after obfuscation is proportional to the value set in rescaling factor.



SECTION 6. ALGORITHM OF OBFUSCATION 74

Table 6.10: Values of complexity measures of test programs after obfuscation with method 3.

x86 | x86 | x86 [ MIPS|MIPS |MIPS | x86 [ MIPS
Program EL ED EF EL ED EF HS HS
HASH 8.7 1 11.7 9.1 2 3.0 3.93 | 4.61
MATRIX 8.7 3 22.1 8.6 4 8.7 451 | 4.73
INSORT 8.6 3 19.7 8.7 3 9.5 441 | 5.00
BUBSORT 8.7 3 25.1 8.6 4 104 || 434 | 476
MAXARRAY || 86 4 28.8 8.4 4 11.0 458 | 4.90
QSORT 8.7 6 51.4 8.6 7 197 | 498 | 4.86
SIMPROC 8.6 11 17.8 8.6 14 7.3 5.06 | 5.23
IDCT 8.8 6 22.4 8.5 8 18.2 4.80 | 4.79
CODETEST 8.8 4 9.9 8.6 5 8.4 3.48 | 4.66
DECODE 8.7 1 27.0 8.7 2 19.3 3.68 | 4.75
| Average | 87 | 4 | 236 | 86 | 5 | 11.6 [ 4.37 | 4.80 |

6.4.3 Empirical Test Results

Empirical quality tests of the sample algorithm were performed only on the test program DE-
CODE, obfuscated with two different methods. In the first method program was obfuscated
using blocks reordering (with frequency Rp = 0.2) and insertion of instructions changing not
used part of context only (with dependencies between them switched off ), with rescaling factore
set to S = 5. Due to obfuscation the time of analysis increased few times (table 6.11), but still
for most people from the group of crackers reading of the correct meaning of the program was
not a difficult task. Partial results obtained by students could not be classified as correct.

Table 6.11: Summary of empirical research of the quality of code obfuscation for metod 1.

Number of | Best time of | Correct
Group people answer [h] answers
students 46 — —
engineers 9 3 1
crackers 7 1

In the second method the full implementation of the sample algorithm was used. A sim-
ple opaque constructs were applied, based on logic and arithmetic operations and additional
input parameters of obfuscated function (like in examples in appendix C). The same values
of frequency of blocks reordering and rescaling like in the first method were set. The final
program turned out to be much more resilient (table 6.12). No correct answer was obtained
from students and engineers, although especially students put a lot of work into analysis and
obtained quite significant partial results. Using "manual” method brute force crackers analyzed
the obfuscated program in quite a short time without bigger problems.

6.4.4 Summary of Quality Test Results

After carrying out of empirical tests it turned out, that an experienced person can unobfuscate
the test program rescaled few times (S = 5...15) without any problems. In case of programs
obfuscated with bigger value of rescaling factor S participants proposed similar algorithms of
unobfuscation, all partially automatic. General pattern of such an algorithm looks like this:



SECTION 6. ALGORITHM OF OBFUSCATION 5

Table 6.12: Summary of empirical research of the quality of code obfuscation for metod 2.

Number of | Best time of | Correct
Group people answer [h] answers
students 14 — —
engineers 7 — —
crackers 5 2 3

e do a full data flow analysis — build control flow graph, then data flow graph and analyze
local context for every instruction

e optimize the data flow graph — causes removal of some reversible operations and instruc-
tions changing not used part of context

e scan control flow graph to look for opaque constructs — partially automatic step, because
decision about removal of a node of graph may be made efficiently only by human

In practice the unobfuscation process must be executed in an iterative way, because the
presence of opaque constructs make single-step removal of all additional instructions impossible.
It implies, that it is possible to create a good protection by insertion of high number of different
opaque constructs into a program being rescaled as much as possible (S > 1). An example
of such solution can be concatenation of method of control flow graph flattening (strenghtened
with data aliasing [72]) and insertion of reversible operations and instructions changing not used
part of context. Great advantage of such solution would be theoretically proven high resilience,
disadvantage — small differentiation of type of used opaque constructs.

The results of empirical research can be compared with results of analytical measures. Mak-
ing empirical research takes a lot of time, so finding general conclusions from such comparison
could allow to make a quick estimations of efficiency of tested algorithm only on the base of
analytic measures. In the table 6.13 are shown results of obufscation with two metods, made on
the program DECODE. The simplified method is method 3 from the chapter 6.4.1 and method
full is method 1. Efficiency was calculated by division of the best time of correct answer by
the time needed for analysis before obfuscation of the program. This example shows, that a
good measure of real efficiency is similar to the average potency of obfuscated program. Yet
precise analysis of tables 6.8, 6.9 and 6.10 shows, that dependency between average potency
and efficiency has more non-linear character. From the performed experiments it can be seen,
that growth of potency of resilience of obfuscated program causes growth of efficienty of the
obfuscation process.

Table 6.13: Summary of results of obfuscation algorithm quality measures for program DE-
CODE.

| Method of obfuscation || Average potency | Resilience | Efficiency |
simplified 3.68 weak 14
full 8.53 full 28

It is hard to compare obtained results of empirical research to any research made so far. In
present publications only pure theoretical analysis of efficiency of obfuscation algorithms was
taken into account ([25]) or only empirical measures of cost of obfuscated transformation were
made ([72]). From the theoretical background (chapter 5.3.3) efficiency of presented algorithm
is not different from efficiency of the other algorithms ([26]).



Section 7

Summary and Conclusions

After the implementation of sample algorithm for different microprocessor architectures:
Intel x86 and MIPS, we performed analytical and empirical measures to determine quality of
the obtained process of obfuscation.

7.1 Summary

In comparison with other known algorithms of obfuscation, the proposed approach looks very
promising (table 7.1). Its low complexity comes from easiness of semantic analysis of machine
languages and simplicity of implementation of data flow analysis on the low level of program-
ming. Other areas of comparison have the following meaning:

e portability — how easy is to transfer an implemented algorithm from one machine to
another

e flexibility — how easy is to use an implemented algorithm in different development envi-
ronment or programming language

e scalability — how much an obfuscation process can be controlled by user

Collberg’s algorithm is not very portable, because it was designed especially for use with
the Java Virtual Machine. Proposed algorithm is most flexible being most isolated from high
level programming languages structures. Chenxi Wang’s algorithm uses very specific opaque
constructs, making him not very scalable.

Table 7.1: Comparison of three algorithms of code obfuscation.
| Property || Collberg | Chenxi Wang | Wréblewski |

Complexity high medium low
Portability no yes yes
Flexibility medium medium high
Scalability high low high

In addition we should point in the compared algortihms on the following properties:

e Chenxi Wang — very high resilience (proven theoretically), but specific opaque constructs
are not protected at all (ex. no reversible operations are inserted), so they are easy to
catch by a human

76



SECTION 7. SUMMARY AND CONCLUSIONS 7

e Collberg, Chenxi Wang — after obfuscation the program cannot be obfuscated once again
(one-way change on control flow)

e Collberg — high number of parameters controlling the algorithm makes empirical research
almost impossible

Removal of code inserted by three compared algorithms requires a construction of special
optimizer for given type of processor. It can be read from long and often discussion on the
discussion group comp.compilers, that creation of such a tool is not very realistic.

Proposed algorithm allows to obfuscate already obfuscated programs. Programs obufscated
in such a way will have significantly different control flow graph (in comparison to programs
obfuscated one time only), in the way dependent on the kind of inserted opaque constructs.

Thanks to low complexity of the algortihm, presented method can be applied in software
watermarking and in computer viruses. Every next copy of virus can be obfuscated in a different
way, covering characteristic places of a program.

The main drawback of all developed algorithms of obfuscation so far is the fact, that they
remove all effects of code optimization, done by compliers. In modern processor it causes very
ofter breaking of data processing stream, which slows down execution. That’s way critical loops
and highly optimized fragments should not be obfuscated.

7.2 Future Work
To develop presented method of obfuscation, we propose following paths of research:

e searching for methods of obfuscation of context between procedures, which would allow
to obfuscate the whole programs

e research on influence of types of opaque constructs on resilience of obfuscated programs
e performing more detailed empirical research, to penetrate abilities of crackers environment

e adaptation of the algortihm for a VLIW type machine ( Very Long Instruction Word), in
which obfuscation has especially great impact on performance of obfuscated programs

Development of proposed method in showed directions would allow to obatin even more
general and efficient algorithms, obfuscating whole programs in a complex way.

7.3 Conclusions

The proposed method of program code obfuscation is very general — it does not depend on
specific properties of any computer architecture, but to general idea of context and instruction
only. To convert an implemented algorithm for a new machine, it is only required to handle
specific properties of its architecture (like special instructions)3®.

It can be seen that efficient obfuscation is also possible with low-level approach. Using the
results from empirical research, we estimated parameters of obfuscation required to obtain well
protected software. Results of this research, made first time, add some information impossible
to obtain only from pure analytical measures ([26], [72]). To estimate a work required to read
the correct meaning of an obfuscated program, we made following assumptions (chapter 6.4.3):

38 Convertion of implemented version for x86 processor on the MIPS processor took few hours of work only.



SECTION 7. SUMMARY AND CONCLUSIONS 78

6.
7.

. 10 to 100 experienced crackers can work simultaneously.

They can work about one year (350 days).
Obfuscated software includes different opaque constructs.

Each cracker works 4 hours daily (on average).

. Average performance of a cracker in removing of opaque constructs is 10 constructs per

hour.
The average opaque construct is 5 instructions long.

Additional code protecting opaque constructs makes final code 2 to 10 times longer.

After multiplication of given values, the estimated length of an obfuscated short program is
from 1,400,000 to 70,000,000 instructions. Above example is extreme, but it ensures almost
full protection of hidden code. Even such a long piece of code would execute quickly on present
machines.

The main goal of the work, creation of equally efficient algorithm of code obfuscation on the
assembler level, simpler than algorithms making full analysis of structures of programs written
in high-level languages, was made with satisfying results.



References

[1]

F.B. Abreu, Metrics for Object-Oriented Environment, Proceedings of the Third Interna-
tional Conference on Software Quality, Lake Tahoe, Nevada, October 4-6, 1993, pp. 67-75

Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley Publishing Company, 1988

D.J. Albert, S.P. Morse, Combating software piracy by encryption and key management,
IEEE Computer, April 1982

F.E. Allen, Control flow analysis, SIGPLAN Notices 5(7):1-19, July 1970

Ross J. Anderson, Fabien A. Petitcolas, On The Limits of Steganography, IEEE Journal of
Selected Areas in Communications, 16(4):474-481, May 1998

David Aucsmith, Tamper Resistant Software: An Implementation, Information Hiding,
Springer Lecture Notes in Computer Science vol. 1174, 1986, pp. 317-333

C.T. Bailey, W.L. Dingee, A Software Study Using Halstead Metrics, Bell Laboratories
Denver, CO. 80234, 1981

B.S. Baker, An algorithm for structuring flowgraphs, Journal of the ACM, 24(1):98-120,
January 1977

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vad-
han, Ke Yang, On the (Im)possibility of Obfuscating Programs, Advances in Cryptology
— CRYPTO’01, Springer Lecture Notes in Computer Science vol. 2139, pp. 1-18, Santa
Barbara, CA, November 2001

V. Basili, D. Hutchens, An Empirical Study of a Complexity Family, IEEE Transactions on
Software Engineering, Volume 9, No. 6, November 1983, pp. 664-672

Manuel Blum, Sampath Kannan, Designing programs that check their work, Journal of the
ACM, 42(1):269-291, January 1995

David R. Chase, Mark Wegman, F. Kenneth Zadeck, Analysis of pointers and structures,
ACM SIGPLAN Notices 25(6):296-310, June 1990

Shyam R. Chidamber, Chris F. Kemerer, A metrics suite for object oriented design, IEEE
Transactions on Software Engineering, 20(6):476-493, June 1994

Cristina Cifuentes, A Structuring Algorithm for Decompilation, XIX Conferencia Lati-
noamericana de Informatica, Buenos Aires, Argentina, August 1993, pp. 267-276

79



REFERENCES 80

[15]

[16]

[17]

[18]

[26]

[27]

Cristina Cifuentes, The Impact of Copyright on the Development of Cutting-Edge Reverse
Engineering Technology, Proceedings of the Sixth Working Conference on Reverse Engi-
neering, Atlanta, USA, October 1999, IEEE-CS Press, pp. 66-76

Cristina Cifuentes, Doug Simon, Procedural Abstraction Recovery from Binary Code, Tech-
nical Report 448, Department of Computer Science and Electrical Engineering, The Uni-
versity of Queensland, September 1999

Cristina Cifuentes, Antoine Fraboulet, Interprocedural Data Flow Recovery of High-level Lan-
guage Code from Assembly, Technical Report 421, Department of Computer Science and
Electrical Engineering, The University of Queensland, December 1997

Cristina Cifuentes, Antoine Fraboulet, Intraprocedural Static Slicing of Binary Fxecutables,
Proceedings of the International Conference on Software Maintenance, Bari, Italy, October
1997, pp. 188-195, IEEE-CS Press

Cristina Cifuentes, Interprocedural Data Flow Decompilation, Journal of Programming Lan-
guages, Vol 4(2), June 1996, pp. 77-99

Cristina Cifuentes, An Environment for the Reverse Engineering of Executable Programs,
Proceedings of the Asia-Pacific Software Engineering Conference (APSEC), IEEE Com-
puter Society Press. Brisbane, Australia, December 1995, pp. 410-419

Cristina Cifuentes, K.John Gough, Decompilation of Binary Programs, Software - Practice
& Experience, Vol 25(7), July 1995, pp. 811-829

Cristina Cifuentes, K.John Gough, A Methodology for Decompilation, Proceedings of the XIX
Conferencia Latinoamericana de Informatica, Buenos Aires, Argentina, August 1993, pp.
257-266

Cristina Cifuentes, Doug Simon, Antoine Fraboulet, Assembly to High Level Language Trans-
lation, Technical Report 439, Department of Computer Science and Electrical Engineering,
The University of Queensland, August 1998

Frederick B. Cohen, Operating System Protection Through Program FEvolution, 1992

Christian Collberg, Clark Thomborson, Douglas Low, A Taxonomy of Obfuscating Trans-
formations, Technical Report #148, Department of Computer Science, The University of
Auckland, 1997

Christian Collberg, Clark Thomborson, Douglas Low, Manufacturing Cheap, Resilient, and
Stealthy Opaque Constructs, SIGPLAN-SIGACT POPL’98, ACM Press, San Diego, CA,
January 1998

Christian Collberg, Clark Thomborson, Douglas Low, Breaking Abstractions and Unstructur-
ing Data Structures, IEEE International Conference on Computer Languages, ICCL’98,
Chicago, IL, May 1998

Christian Collberg, Clark Thomborson, On the Limits of Software Watermarking, Technical
Report #164, Department of Computer Science, The University of Auckland (1998)

Christian Collberg, Clark Thomborson, Software Watermarking: Models and Dynamic Em-
beddings, Technical Report, Department of Computer Science, The University of Auckland
(1998)



REFERENCES 81

[30]

[38]
[39)

[40]

[41]

[42]

Christian Collberg, Clark Thomborson, Watermarking, Tamper-Proofing, and Obfuscation —
Tools for Software Protection, Technical Report #170, Department of Computer Science,
The University of Auckland; also: Technical Report 2000-03, Department of Computer
Science, University of Arizona (2000)

Tom DeMarco, Timothy Lister, Peopleware: Productive Projects and Teams, 2nd. ed., Dorset
House Publishing Company, New York, 1999

A. Deutsch, Interprocedural may-alias analysis for pointers: Beyond k-limiting, SIGPLAN
PLDI'94, Orlando, FL, ACM SIGPLAN Notices 29(6), June 1994, pp. 230-241

J. Domingo-Ferrer, Software run-time protection: A cryptographic issue, Advances in Cryp-
tology: EUROCRYPT’90, May 1990, Springer Lecture Notes in Computer Science vol.
473, 1991, pp. 474-480

Rex Jaeschke, Encrypting C source for distribution, Journal of C Language Translation,
2(1), 1990

Neil F. Johnson, Sushil Jajodia, Computing practices: Ezxploring steganography: Seeing the
unseen, Computer, 31(2):26-34, February 1998

James R. Gosler, Software protection: Myth or reality?, CRYPTO’85 — Advances in Cryp-
tology, August 1985, pp. 140-157

Satoshi Hada, Zero-knowledge and Code Obfuscation, ASIACRYPT’2000 — Advances in
Cryptology, International Association for Cryptologic Research, Kyoto, Japan, 2000

M.H. Halstead, Elements of Software Science, Elsevier North-Holland, 1977

Warren A. Harrison, Kenneth |. Magel, A complexity measure based on nesting level, SIG-
PLAN Notices 16(3):63-74, 1981

M. Hecht, J. Ullman, A simple algorithm for global data flow analysis problems, STAM
Journal of Computing, vol. 4, December 1975, pp. 519-532

Amir Herzberg, Shlomit S. Pinter, Public protection of software, ACM Transactions on Com-
puter Systems, 5(4):371-393, November 1987

A. Herzberg, G. Karmi, On software protection, 4th Jerusalem Conference on Information
Technology, Jerusalem, Israel, April 1984

G.L. Hopwood, Decompilation, PhD Dissertation, University of California, Irvine, Computer
Science, 1978

B.C. Housel, A Study of Decompiling Machine Languages into High-Level Machine Inde-
pendent Languages, PhD Dissertation, Purdue University, Computer Science, August 1973

William Landi, Barbara Ryders, A Safe Approximate Algorithm for Interprocedural Pointer
Analysis, Technical Report, Department of Computer Science, Rutgers University, New
Brunswick, 1991

William Landi, Interprocedural Aliasing in the Presence of Pointers, PhD Dissertation, De-
partment of Computer Science, Rutgers University, New Brunswick, January 1992



REFERENCES 82

[47]

[48]

U. Lichtblau, Decompilation of control structures by means of graph transformations, Pro-
ceeding of the International Joint Conference on Theory and Practice of Software Devel-
opment (TAPSOFT), Berlin, 1985

Jean-Paul M.G. Linnartz, A.A.C. Kalker, G.F.G. Depovere, R.A. Beuker, A reliability model
for the detection of electronic watermarks in digital images, Philips Research, Eindhoven,
the Netherlands

Douglas Low, Java Control Flow Obfuscation, Master of Science Thesis, Department of
Computer Science, The University of Auckland (1998)

Douglas Low, Protecting Java code via code obfuscation, ACM Crossroads, Spring issue
1998

Josh MacDonald, On Program Security and Obfuscation, Technical report, Department of
Computer Science, University of California, Berkeley, December 1998

Stavros Macrakis, Protecting source code with ANDF, January 1993, www.andf .org

Antonio Mafia, Ernesto Pimentel, An Efficient Software Protection Scheme, IFIP Sixteenth
Annual Conference on Information Security, Paris, France, June 2001

Thomas J. McCabe, A complexity measure, IEEE Transactions on Software Engineering,
2(4):308-320, December 1976

Siba N. Mohanty, Entropy Metrics for Software Design Fvaluation, The Journal of Systems
and Software, No. 2, 1981, pp. 39-46

John. C. Munson, Taghi M. Kohshgoftaar, Measurement of data structure complexity, Journal
of Systems Software, 20:217-225, 1993

Jasvir Nagra, Clark Thomborson, Christian Collberg, A Functional Taxonomy for Software
Watermarking, Australasian Computer Science Conference (ACSC2002), Melbourne, Aus-
tralia, August 2002

R. Ostrovsky, An efficient software protection scheme, Advances in Cryptology:
CRYPTO’89, Berlin, August 1990, Springer, pp. 610-611

Enrique |. Oviedo, Control Flow, Data Flow and Programmers Complexity, Proceedings of
COMPSAC 80, Chicago IL, 1980, pp.146-152

Fabien A. Petitcolas, Ross J. Anderson, Markus G. Kuhn, Attacks on Copyright Marking
Systems, Second workshop on information hiding, Portland, Oregon, April 1998, pp. 218-
238

Thomas Pittman, James Peters, The Art of Compiler Design: Theory and Practice, Prentice-
Hall Inc., New Jersey 1992

Henry Sallie, Dennis Kafura, Software structure metrics based on information flow, IEEE
Transactions of Software Engineering, 7(5):510-518, September 1981

Pamela Samuelson, Reverse-engineering someone else’s software: Is it legal?, IEEE Soft-
ware, January 1990, pp. 90-96



REFERENCES 83

[64]

[65]

[66]
[67]

[68]
[69]

[70]

[71]

T. Sander, Chr. Tschudin, On Software Protection via Function Hiding, Proceedings of the
Second Workshop on Information Hiding, Springer Lecture Notes in Computer Science

Luis Sarmenta, Protecting Programs from Hostile Environments: Encrypted Computation,
Obfuscation, and Other Techniques,

R. Sedgewick, Implementing Quicksort programs, Comm. ACM 21, pp. 847-857

Doug Simon, Structuring assembly programs, Honours thesis, The University of Queensland,
Department of Computer Science and Electrical Engineering, 1997

Jan Stanistawski, Wielki Stownik Angielsko-Polski, Wiedza Powszechna, Warszawa 1966

Frank Tip, A survey of program slicing techniques, Journal of Programming Languages,
3(3):121-189, September 1995

Chenxi Wang, Jonathan Hill, John Knight, Jack Davidson, Software Tamper Resistance: Ob-
structing Static Analysis of Programs, Technical Report, University of Virginia, Depart-
ment of Computer Science, 2000

Chenxi Wang, Jonathan Hill, John Knight, Jack Davidson, Protection of Software-based Sur-
vivability Mechanisms, International Conference of Dependable Systems and Networks,
Goteborg, Sweden, July 2001

Chenxi Wang, A Security Architecture for Survivability Mechanisms, PhD Dissertation,
University of Virginia, Department of Computer Science, October 2000

Hal Wasserman, Manuel Blum, Software reliability via run-time result-checking, Journal of
the ACM, 44(6):826-849, November 1997

S.P. Weisband, Seymour E. Goodman, International software piracy, Computer, 92(11):87-
90, November 1992

Elaine J. Weyuker, Evaluating Software Complezity Measures, IEEE Transactions of Soft-
ware Engineering Volume 14, No. 9, September 1988

Grzegorz Wréblewski, General Method of Program Code Obfuscation, Proceedings of the
International Conference on Software Engineering Research and Practice (SERP) 2002,
Las Vegas, USA, June 2002, pp. 153-159

Shikun Zhou, Hongji Yang, William C. Chu, Reverse Engineering Metrics: the Sizth Element,
Proceedings of the International Conference on Software Engineering Research and Practice
(SERP) 2002, Las Vegas, USA, June 2002, pp. 160-167



Appendix A

Test Programs

For practical research and tests we have choosen 10 simple programs doing different tasks
(table A.1). Programs were written in C programming language and compiled with typical
compiler for given processor. Obtained executable code was obfuscated and measured. Below
we included listings and short descriptions of all programs.

Table A.1: Programs used for research and tests of algorithm of obfuscation.

| Name | Description |
HASH calculation of 32-bit hash code from a string
MATRIX multiplication of matrices
INSORT sorting by simple insertion

BUBSORT bubble sorting
MAXARRAY | searching of sub-array with max sum of elements

QSORT quick sorting

SIMPROC simulation of simple processor

IDCT reverse discrete cosine transform
CODETEST | self-check of code by calculating a checksum
DECODE decoding of a fragment of program

A.1 Program HASH

The program calculates a 32-bit hash code of a string of characters, ending with character of
value 0. Algorithm of calculation uses one rotation and one xor of final sum and next character
in the string.

long hash(unsigned char *str)

{
unsigned long hash=0x12345678;
while(*str!=0)
hash=((hash<<9)|(hash>>23)) “*str++;
return hash;
b

84



TEST PROGRAMS 85

A.2 Program MATRIX

Program multiplies two marices: tabl and tab2, which have dimension m. Result is put into
matrix tab3.

void matrix(long **tabl,long **tab2,long **tab3,long m)

{
long i,j,k,sum;
for(i=0;i<m;i++)
for(j=0;j<m;tab3[i] [jl=sum, j++)
for (k=0,sum=0;k<m;k++)
sum+=tabl[i] [k]*tab2[k] [j];
}

A.3 Program BUBSORT

It is a simple implementation of bubble sorting. A table of numbers of type long is sorted,
which has length len.

void bubsort(long *tab,long len)

{
long i,tmp,flag;
len—-;
for(flag=1;flag!=0;)
{
flag=0;
for(i=0;i<len;i++)
if (tab[i]l>tab[i+1])
{
tmp=tab[i];
tab[i]=tab[i+1];
tab[i]=tmp;
flag=1;
}
}
}

A.4 Program INSORT

It is an example of sorting by simple insertion. A table of numbers of type long is sorted, which
has length len.

void insort(long *tab,long len)

{
long i,j,k,pos;

len—-;



TEST PROGRAMS 36

for(i=0;i<len;i++)
{
for(pos=i,k=tab[i],j=i+1;j<len;j++)
if (tab[jl<k)
{
k=tab[j];
pos=j;
}
tab[pos]=tabl[i];
tab[i]=k;

A.5 Program MAXARRAY

The program finds in the array of integer numbers a continuous sub-array, which sum of number
is maximum. The position of the table is returned by program and its size — by pointer size.

long maxarray(long *tab,long len,long *size)
{

long i,sum,tmp,best,mpos,min,tsum,bpos;

best=0; sum=0; *size=0; min=0; mpos=0;
for(i=0;i<len;i++)
{
tmp=sum+tab[i] ;
if (sum>=tmp)
{
tsum=sum-min;
if (tsum>best)
{
best=tsum;
bpos=mpos;
*size=i-mpos;
}
if (tmp<min)
{
min=tmp;
mpos=i;

b
sum=tmp;
3
if ((sum-min) >best)
{
bpos=mpos;
*size=i-mpos;



TEST PROGRAMS

return bpos;

A.6 Program QSORT

87

It is a typical implementation of a quick sorting algorithm, based on [66]. The array stack holds
arguments to avoid recursive calls.

void gsort(long *tab,long len,long *stack)

{

long i,r=len/2,sp=0,l=len,v,j,tmp;

stack[sp++]=1; stack[sp++]=r;
while (sp!=0)

{

r=stack[--sp]; l=stack[--sp];
if (r<=1)

continue;

v=tab[r]; i=1-1; j=r;
for (;;)

{

}

while (tab[++j]1>v)
if (j==1)
break;
while(v>tab[--i])
if (i==0)
break;
if (i>=j)
break;
tmp=tab[i];
tab[il=tab[j];
tab[j]l=tmp;

tmp=tab[i];
tab[il=tab[r];
tab[r]=tmp;
if (i-1>r-1i)

{

stack[sp++]=1; stack[sp++]=i-1;
stack[sp++]=i+1; stack[sp++]=r;

} else {

stack[sp++]=i+1; stack[sp++]=r;
stack[sp++]=1; stack[sp++]=i-1;



TEST PROGRAMS 38

A.7 Program SIMPROC

Program is a simple simulation of a virtual processor. It executes code from an array of given
length.

long simproc(long *code,long len)
{

long ip=0,1,j,k;

long regl4];

while(ip'!=len)
{
switch(code [ip++])
{
case 100:
i=code [ip++];
if(i<0 [|i>3)
return O;
regli]=code[ip++];
break;
case 200:
i=code[ip++]; j=codel[ip++]; k=code[ip++];
if (i<0 ||i>3 ||j<0 |[j>3 ||k<O0 |[k>3)
return O;
reglil=regljl-reglk];
break;
case 300:
i=code[ip++]; j=codel[ip++];
if (i<0 [|i>3 [||j<0 ||j>=1en)
return O;
if (reg[i]==0)
ip=J;
break;
case 400:
i=code[ip++]; j=codel[ip++];
if (i<0 [|i>3 [||j<0 ||j>=1en)
return O;
if (regl[il>0)
ip=J;
break;
case 500:
i=code[ip++]; j=codel[ip++]; k=code[ip++];
if (<0 |[i>3 ||j<0 |[j>3 ||k<O0 [[k>3)
return O;
reglil=regljl*reglk];
break;
case 600:
i=code[ip++]; j=codel[ip++]; k=codel[ip++];



TEST PROGRAMS 39

if (i<0 [|i>3 ||j<0 ||j>3 |/k<0 [[k>3)
return O;
if (reglk] !=0)
reglil=regljl/reglk]l;
else
regli]=0;
break;
case 700:
ip=len;
break;
default:
return O;

}

return reg[0];

A.8 Program IDCT

Program calculates two-dimensional (8x8) reverse cosine transform for integer values. Array
block contains input and output data, array ¢ contains coefficients of transformation (fixed point

was set on position 2'2).

void idct(long *block,long **c,long *tmp)
{

int i, j, k, v;

long partial_product;

for (i=0; i<8; i++)
for (j=0; j<8; j++)

{
partial_product = O;
for (k=0; k<8; k++)
partial_product+= (c[k] [j]*block[8*i+k])>>12;
tmp [8*i+j] = partial_product;
}

for (j=0; j<8; j++)
for (i=0; i<8; i++)

{
partial_product = O;
for (k=0; k<8; k++)
partial_product+= (c[k] [i]*tmp [8%k+j])>>12;
v = partial_product;
block[8*i+j] = (v<-266) 7 -2566 : ((v>265) 7 255 : wv);
}



TEST PROGRAMS 90

A.9 Program CODETEST

The program calculates a control sum for given array and then enters an infinite loop if the
calculated value is different from hardcoded one. To avoid detection of the moment of checking
a non-trivial infinite loop was created and an extra loop on the end of procedure was inserted.

void codetest(long *code,long len)

{

long i,sum=0;

for(i=0;i<len;i++)
sum=(sum+code[i]) “code[i];

if (sum!=0x12345678)
for(i=0;i<len;i++)
{
sum+=0x12345678"i+code[i];
1-=;

}

for(i=0;i<len-1;i++)
if (sum>0x12345678)
code[i]=sum~i-code[i+1];

A.10 Program DECODE

The program decodes a fragment of memory, given in the form of array of integer numbers
without sign. The coding key is value given in parameter key and the decoded data. The
decoding looks almost like obfuscated code, so it should be an easy object to hide in the process
of obfuscation.

void decode(unsigned long *code,long len,unsigned long key)

{
unsigned long i,j=0x87654321;

for(i=0;i<len;i++)

{
j =(code[i] "key) >>7;
j"=(code[i] "key) <<25;
key=j key~0x12345678;
code[il=j;

}



Appendix B

Research on Properties of Programs

Programs of most todays computers contain dependencies between neighbourhood instruc-
tions. These dependencies are present in data sources processed by given pair of instructions.
Introduction of such model: instructions plus dependencies, allowed to obtain a simple algo-
rithm of generation of obfuscated code. Yet numeric parameters of this model are probabilities
of occurrences of these dependencies, which were determined empirically.

B.1 Dependencies Between Instructions

To determine dependecies between instructions in a typical program we used executable code of
test programs described in appendix A. Frequency of occurence of a dependency was examined
in the function of distance between two instructions, marked as d. Value d = 1 means adjoining
instructions. Test programs were compiled for two types of processors: Intel x86 and MIPS
R4000. Results of research for Intel processor are shown in table B.1 and for MIPS processor —
table B.2.

Table B.1: Dependencies between instructions in test programs for Intel x86 processor.

| Program || d=1 | d=2 | d=3 | d=4 | d=5 | d=6 | d="7
HASH 0.46 | 0.09 | 0.09 | 0.14 | 0.10 | 0.05 | 0.11
MATRIX 0.43 | 0.13 | 0.12 | 0.1 | 0.02 | 0.04 | 0.02
INSORT 0.32 | 0.11 | 0.00 | 0.18 | 0.05 | 0.14 | 0.02
BUBSORT 0.4 | 0.13 | 0.00 | 0.19 | 0.09 | 0.13 | 0.02
MAXARRAY || 0.44 | 0.11 | 0.02 | 0.10 | 0.07 | 0.12 | 0.14
QSORT 0.45 | 0.10 | 0.08 | 0.20 | 0.08 | 0.13 | 0.02
SIMPROC 0.45 | 0.19 | 0.15 | 0.16 | 0.15 | 0.11 | 0.11
IDCT 0.38 | 0.25 | 0.15 | 0.06 | 0.05 [ 0.05 | 0.01
CODETEST 0.41 | 0.17 | 0.03 | 0.24 | 0.10 | 0.05 | 0.12
DECODE 0.51 | 0.24 | 0.03 | 0.08 | 0.11 | 0.09 | 0.12

| Average | 0.43 | 0.15 | 0.07 | 0.15 | 0.08 | 0.09 | 0.07 |

Averaged arithmetically result for each processor is shown in the form of graph on the figures
B.1 and B.2. It can be seen that in case of Intel processor dependencies between adjoining
instructions occurr most often and the average value for larger distances is &~ 0,21. It means,
that dependency occurrs in one of five instructions (on average).

91



RESEARCH ON PROPERTIES OF PROGRAMS

Table B.2: Dependencies between instructions in test pro

| Program || d=1 | d=2 | d=3 | d=4 | d=5 | d=6 | d=7 |
HASH 0.44 | 0.07 [ 0.07 | 0.08 | 0.00 | 0.00 | 0.00
MATRIX 0.40 | 0.07 | 0.02 | 0.02 | 0.00 [ 0.00 | 0.05
INSORT 0.38 | 0.09 | 0.09 | 0.03 | 0.03 [ 0.00 [ 0.04
BUBSORT 0.46 | 0.16 | 0.00 | 0.05 | 0.00 [ 0.02 | 0.00
MAXARRAY [ 041 | 0.04 | 0.02 | 0.02 | 0.04 [ 0.02 [ 0.00
QSORT 0.50 | 0.03 ] 0.07 [ 0.06 | 0.02 [ 0.04 [ 0.02
SIMPROC 0.43 [ 0.10 | 0.02 ] 0.02 | 0.04 [ 0.06 [ 0.00
IDCT 0.53 | 0.06 | 0.01 | 0.02 | 0.00 [ 0.02 [ 0.04
CODETEST || 0.49 | 0.09 [ 0.04 [ 0.06 | 0.02 | 0.02 | 0.00
DECODE 0.62 | 0.03 | 0.06 | 0.06 | 0.00 | 0.00 | 0.00

| Average | 0.47 | 0.07 | 0.04 | 0.04 | 0.02 | 0.02 | 0.02

dependency
0,45

0,40 -

0,35 -

0,30 -

0,25 -

0,20 -

0,15 -

0,10 -

“Ahalnn

0,00 - . . . . . .
1 2 3 4 5 6

B

7 distance

92

grams for MIPS R4000 processor.

Figure B.1: Probability of dependency between instructions of program for Intel x86 processor
in the function of distance between them.

Joined results from two processors were used in the dissertation (figure 5.2). We think, that
result obtained in such a way is quite general, because processors Intel x86 and MIPS represent

two extreme different architectures (CISC and RISC) with very different instruction set.

B.2 Random Programs

Calculation of probabilities of dependencies in case of generated random programs was also
very important. Tests were performed on two models: pure random (every instruction is drawn
independently and added unconditionally to program) and random with dependencies (an in-
struction is drawn and an attempt to add some dependencies between the drawn instruction



RESEARCH ON PROPERTIES OF PROGRAMS 93

dependency
0,50

0,45
0,40
0,35
0,30
0,25
0,20
0,15
0,10
0,05

0,00 - .ll-l.
2 3 4

1

_— . =
5 6 7 distance

Figure B.2: Probability of dependency between instructions of program for MIPS R4000 pro-
cessor in the function of distance between them.

and previous one is made3?).
Tests were performed for two processors: Intel x86 and MIPS. For each processor we get
two groups of tests:

1. Random programs (tables B.3 and B.5) — tests for programs hacing different length:
100 and 1000 instructions, performed two times for different values of random numbers
generator seed (RANDOM1 and RANDOM?2).

2. Random programs with dependencies (tables B.4 and B.6) — tests for programs having
different length: 100 and 1000 instructions, performed two times for different values of
random numbers generator seed (RANDOM1 and RANDOM?2).

Table B.3: Dependencies between instructions in random programs for processor Intel x86.
| Program (length) || d=1 | d=2 | d=3 [ d=4 | d=5 | d=6 | d=T7 |
RANDOMI1 (100) 0.17 | 0.22 | 0.16 | 0.14 | 0.14 | 0.22 | 0.11
RANDOM!1 (1000) 0.16 | 0.19 | 0.19 | 0.18 | 0.15 | 0.19 | 0.13
RANDOM2 (100) 0.18 | 0.22 | 0.16 | 0.13 | 0.14 | 0.22 | 0.11
RANDOM2 (1000) 0.16 | 0.19 | 0.19 | 0.18 | 0.15 | 0.18 | 0.13

| Average | 0.17 | 0.21 | 0.18 | 0.16 | 0.15 | 0.20 | 0.12 |

Joined results for each processor are presented in the form of graphs on the figures B.3 and
B.4. It can be seen, that the model with dependencies is good enough for generation of a real
programs.

Joined results from two processors were used in the dissertation (figures 5.3 and 5.4).

39Tn general case it is not always possible, because instructions need not to have a common argument.



RESEARCH ON PROPERTIES OF PROGRAMS 94

Table B.4: Dependencies between instructions in random programs with dependencies for pro-
cessor Intel x86.

| Program (length) || d=1 | d=2 | d=3 [ d=4 | d=5 | d=6 | d=T7 |
RANDOM!I1 (100) 0.98 | 0.55 | 0.29 | 0.22 | 0.18 | 0.12 | 0.10
RANDOM!I1 (1000) 092 | 048 | 0.28 | 0.18 | 0.14 | 0.14 | 0.16
RANDOM?2 (100) 0.98 | 0.55 | 0.29 | 0.22 | 0.18 | 0.12 | 0.09
RANDOM?2 (1000) 092 | 048 | 0.28 | 0.18 | 0.14 | 0.14 | 0.16

Average | 0.95 | 0.52 | 0.29 | 0.20 | 0.16 | 0.13 | 0.13 |

Table B.5: Dependencies between instructions in random programs for processor MIPS R4000.
| Program (length) || d=1 | d=2 | d=3 [ d=4 | d=5 | d=6 | d=T7 |
RANDOMI1 (100) 0.06 | 0.11 | 0.04 | 0.06 | 0.12 | 0.01 | 0.03
RANDOM1 (1000) 0.09 | 0.07 | 0.07 | 0.06 | 0.06 | 0.04 | 0.04
RANDOM2 (100) 0.06 | 0.11 | 0.04 | 0.06 | 0.12 | 0.01 | 0.03
RANDOM2 (1000) 0.09 | 0.07 | 0.07 | 0.06 | 0.06 | 0.04 | 0.04

Average | 0.08 | 0.09 | 0.06 | 0.06 | 0.09 | 0.03 | 0.04 |

Table B.6: Dependencies between instructions in random programs with dependencies for pro-
cessor MIPS R4000.

Program (length) || d=1|d=2[d=3 | d=4 | d=5 [ d=6 | d=7 |
RANDOMI1 (100) 0.90 | 0.02 | 0.02 | 0.00 | 0.01 | 0.02 | 0.01
RANDOM!1 (1000) 0.81 | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01
RANDOM2 (100) 0.90 | 0.02 | 0.02 | 0.00 | 0.01 | 0.02 | 0.01
RANDOM2 (1000) 0.81 | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01

| Average | 0.86 | 0.04 | 0.02 | 0.01 | 0.01 | 0.02 | 0.01 |

o
1]
=
]
=3
o
]
=3
L3
b

0,90
0,80
0,70
0,60
0,50
0,40
0,30
0,20
0,10 1
0,00 -

\K\\\\\\\\\\\\\\\\\\\\\\Q

3 4 5 6 7 distance
[l random program

random program with dependencies

—_
ra

Figure B.3: Probability of occurrence of dependency between instructions of random programs
for Intel x86 processor.



RESEARCH ON PROPERTIES OF PROGRAMS 95

0,80
0,70
0,60
0,50
0,40
0,30
0,20
0,10
0,00 -

;

7 distance

—_

2
[l random program

random program with dependencies

w
B
(4]
o)

Figure B.4: Probability of occurrence of dependency between instructions of random programs
for MIPS R4000 processor.



Appendix C

Examples of Obfuscated Programs

To demonstrate the implemented sample algorithm of obfuscation in action, we selected
from the test set three programs: sorting program BUBSORT, calculating checksum CODE-
TEST and decoding DECODE. The programs were obfuscated with different parameters, which
showed in the final code different techniques of obfuscation. Listings in the assembler of micro-
processor MIPS were cut to only beginning fragments, because of its small popularity.

In the presented listings the obfuscated code was printed with larger font, reversible opera-
tions with normal font, instructions using not used part of context with italic font and opaque
constructs were underlined (see examples in the table C.1).

C.1 Sorting Program

The program was obfuscated using all three methods of code insertion. Frequency of blocks
reordering was set on 0.0 (no reordering). Occurrence of dependencies between instructions
changing not used part of context was turned on (Iz = 1). Rescaling factor S = 3, made that
the program’s length grew three times.

C.1.1 Version for x86 processor

Thanks to switch off reordering in the obfuscated program can be seen the original control
flow path. Inserted instructions changing not used registers efficiently slow down the analysis
process. Opaque constructions quite nice integrated themselves with the rest of code. According
to analytical measures the transformation has following properties (more information about
analytical measures — see chapter 6.4.1):

e potency: length Ej = 2.55; depth Ep = 11; flow Er = 2.3; average potency Ilg = 1.33

e resilience: full

Table C.1: Examples of formatting of listings of obfuscated programs.

| Example | Description
mov [ebp+12],eax | original instruction
not esi instruction with not used part of context
sub [ebp+12],ecx reversible operation
mov esi, [ebp+16] opaque construct

96



EXAMPLES OF OBFUSCATED PROGRAMS

e cost: cheap

; tmp=ebp-4, flag=ebp-8, i=ebp-12
; tab=ebp+8, len=ebp+12

; Xx1=ebp+16, x2=ebp+20, x3=ebp+24
push  ebp

$L001:

mov ebp,esp
dec DWORD PTR [ebp+12]

sub esp,12 ; allocation of local variables
add est, ebp
not es1

push esi
add ecx, est
sub [ebp+12] ,ecx
add [ebp+12] ,ecx

$1.010:
inc DWORD PTR [ebp+12]
mov eax, [ebp+12] ; len=len-1
sub eax,1
sar ecx, 22
add ebz, ecze
mov [ebp+12] ,eax
$L016:
mov ebzx, est
sar ebx, 30

mov DWORD PTR [ebp-8],1 ; flag=1
neg DWORD PTR [ebp-8]
mov esi, [ebp+16]
shl esi,3
add esi, 160

jl $1.088
$L025:
dec ebx

neg DWORD PTR [ebp-8]
cmp DWORD PTR [ebp-8],0 ; for(...;flag!=0;)
je $L129
mov edi, [ebp+20]
mov DWORD PTR [ebp-8],0 ; flag=0
add edi, 550
i1 $1.001
mov DWORD PTR [ebp-12],0 ; i=0
mov esi, [ebp+16]
add esi,910
ig $1.116
jmp $1L.050
mov edx, [ebp+20]




EXAMPLES OF OBFUSCATED PROGRAMS

add edx, 240
jg $L010
$L.041:

mov ecx, [ebp-12] ;oi++
add ecx,1

rol ecx,b

mov edi, [ebp+24]

shr edi,11

sub edi,5913

jg $L016
ror ecx,b
mov [ebp-12],ecx
$1.050:

mov edx, [ebp-12] ; for(...;i<len;...)
cmp edx, [ebp+12]

ig $L127
zchg edi,eax
ror edz, 6

not DWORD PTR [ebp+8]
add edz, [ebp+8]

mov eax, [ebp-12]
rol edi,19

add est, edl
not DWORD PTR [ebp+8]
mov ecx, [ebp+8]
inc ecx
mov edx, [ebp-12]
and ebz, est
inc ecx
mov esi, [ebp+8]
ToTr ebz, eax
ror eax, 18
ror eax, 14
mov eax,DWORD PTR [ecx+eax*4]
ror edx,31
cmp eax,DWORD PTR [esi+edx*4+4]
jl $L.123 ; if (tab[i]l >tabl[i+1])
$L073:

mov ecx, [ebp+24]
sub ecx, 148

$L075:
jig $L134
inc ebz
dec ecx
dec ecx

mov ecx, [ebp-12]
rol edx, 31
mov edx, [ebp+8]



EXAMPLES OF OBFUSCATED PROGRAMS 99

neg ebz
mov eax,DWORD PTR [edx+ecx*4]
mov esi, [ebp+16]
add esi,690
i1 $L129
$1L088:
mov [ebp-4] ,eax ; tmp=tab[i]
inc DWORD PTR [ebp-12]
dec DWORD PTR [ebp-12]
mov ecx, [ebp-12]
ror ecx,’
mov edx, [ebp+8]
ToT ebz, ebx
ror ebz, 23
mov eax, [ebp-12]
sub ecx, [ebp-8]
sar est,22
mov esi, [ebp+8]
mov ebx, [ebp+24]
sub ebx,229
ig $L131
mov eax,DWORD PTR [esiteax*4+4]
and est, edze
mov DWORD PTR [edx+ecx*4],eax ; tabl[il=tab[i+1]
shl edz, 15
sar edz, 4
add ecx, [ebp-8]
rol ecx,’
mov ecx, [ebp-12]
mov edx, [ebp+8]
add est, edx
rol eax, 25
mov eax, [ebp-4]
add edi, eax
$L116:
neg DWORD PTR [ebp-8]
mov DWORD PTR [edx+ecx*4],eax ; tab[i+1]=tmp
neg DWORD PTR [ebp-8]
mov ecx, [ebp+20]
Xor ecx,6447
je $L073
mov DWORD PTR [ebp-8],1 ; flag=1
$L.123:
rol edx,31
dec ecx
dec ecx
jmp $L.041

$L127:



EXAMPLES OF OBFUSCATED PROGRAMS 100

jmp $L025
inc DWORD PTR [ebp+8]
$L129:
pop esi
mov edx, [ebp+16]
$L131:
shr edx, 11
sub edx, 8055

jg $L075
$L134:
mov esp,ebp
pop ebp
ror eax,b
add [ebp-8], eaz
ret 0

C.1.2 Version for MIPS processor

The program has similar properties like program for x86 processor. Higher number of registers
allowed for greater dissipation of data flow, which makes analysis of program even more difficult.
Result of analytical measures:

e potency: length Fr = 2.71; depth Ep = 4; flow Er = 2.6; average potency Ilg = 0.95
e resilience: full

e cost: cheap

; tab=$4, len=$5, x1=%$6, x2=$7

; tmp=4($29), i=8($29), flag=12($29)

subu $29,16 ; allocation of local variables
addu $5,%$5,-1 ; len=len-1
addu  $5,$5,$31

addu $14,%0,1

SW $14,12($29) ; flag=1
$L004 :

1w $14,12($29)

sw $9,0(829)

beq $14,0,$L111 ; for(...;flag!=0;)
and $23, $15, $23
SW $0,8($29) ; 1=0
xor $4,%4,%12
lw $14,0(829)
SW $0,12($29) ; flag=0
subu  $5,3$5,$31
ble $5,0,$L111 ; for(...;i<len;...)
subu  $4,%4,%9
$LO12:



EXAMPLES OF OBFUSCATED PROGRAMS 101

1w $14,8(%$29)
srl $1,$14,30
sll $27,81,17
mul $15,%$14,4
subu  $14,827, 824
xor $5,$5,%2
addu  $4,%4,%9
xor $4,%4,%12
addu  $24,$4,$15
1w $25,0(%24)
move  $28,$7
addu $28,$28,160
sll $28,$28,3
ble $28,5313,$L034
addu  $8,%$4,$15
1w $9,4($8)
subu  $5,$5,%4
zor $14,4(829), 82
ble $25,$9,$L087 ; if(tabl[i]l<tabl[i+1])
xor $5,%$5,%$23
xor $5,$5,44

C.2 Program Calculating a Checksum

Program was obfuscated using insertion of instruction changing not used part of context only,
with occurrence of dependecies between them turned off (I = 1). Frequency of reordering of
blocks was set to 0.0 (no reordering). Rescaling factor S = 2, caused the final program to grow
twice.

C.2.1 Version for x86 processor

The obfuscated program remained quite readible, because the simples method of obfuscation
was used and small rescaling factor value. On the example of this program we can trace the
method of insertion of instructions changing not used part of context. Analytical measures of
the transformation are as follows:

e potency: length Fr = 1.78; depth Ep = 4; flow Er = 4.1; average potency IIg = 0.36
e resilience: weak

e cost: cheap

; i=ebp-8, sum=ebp-4

; code=ebp+8, len=ebp+12

push  ebp

mov ebp,esp

sub esp,8 ; allocation of local variables



zchg
mov
sal
mov
shr
Jjmp
and
$1010:
mov
neg
add
add
mov
mov
$L016:
mov
sar
cmp
zchg
Jjg
inc
mov
neg
mov
sub
mov
inc
add
mov
mov
sar
mov
rol
Xor
sal
mov
zchg
jmp
add
$1.040:
cmp
mov
je
and
mov
neg
jmp

Tor

EXAMPLES OF OBFUSCATED PROGRAMS

ecz, eax

DWORD PTR [ebp-4],0

ecx, 19

DWORD PTR [ebp-8],0

eczt,24
$L016

ecz, ebz

eax, [ebp-8]

ebzx
eax,1
esi, ebz

[ebp-8] ,eax

est, ear

ecx, [ebp-8]

es1,30

ecx, [ebp+12]

esi, ear
$1.040

edx

edx, [ebp-8]

ed

eax, [ebp+8]

ed, ebp

ecx, [ebp-4]

ed

102

;. sum=0

; =0

s+

; for(...;i<len;...)

ecx,DWORD PTR [eax+edx*4] ; sumtcode[il

edi, edt

edx, [ebp-8]

eds,7

eax, [ebp+8]

edi,10

ecx,DWORD PTR [eax+edx*4] ; (sumt+code[i]) “codel[i]

edi,29

[ebp-4],ecx

ed?, eax

$L010
edi, 236

; sum=(sum+code[i]) “code[i]

DWORD PTR [ebp-4],305419896

eaxr, edl
$1.084

est, eax

; 1f (sum!=0x12345678)

DWORD PTR [ebp-8],0 ; i=0

es1t
$L054

est,est



EXAMPLES OF OBFUSCATED PROGRAMS

$1.048:
mov
add
add
sar
mov
inc
$1.054:
mov
sub
cmp
zchg
Jg
rol
mov
zchg
mov
zor
mov
ror
add
and
Xor
and
mov
shl
add
ror
mov
sub
mov
rol
sub
dec
mov
neg
Jjmp
add
$L084:
mov
inc
Jjmp
neg
$1L.088:
mov
and
add
add

103

ecx, [ebp-8]
est, edze
ecx,1
edx, 29
[ebp-8] ,ecx ;

edx

i++

edx, [ebp-8]
edi, edz

edx, [ebp+12]
edz, eax

$1.000
edz, 8

eax, [ebp-8]
ebz, ecze

ecx, [ebp+8]
ebz, ebzx

edx, [ebp-8]
edi,23

edx,DWORD PTR [ecx+eax*4]
ebz, edt

edx, 305419896 ;
ebz, ebx

eax, [ebp—4]
edi,15

eax,edx
est,4

[ebp-4] ,eax ;
est, ebp

ecx, [ebp-8]
eax, 25

ecx,1
edzx

[ebp-8] ,ecx ;
ecr

$1.048

ecz, ebz

; for(...;i<len;...)

; i+codel[i]

(i+code[i]) ~0x12345678

sum+=0x12345678"i+code [i]

DWORD PTR [ebp-8],0 ; i=0

edx

$L094

edx

edx, [ebp-8]
ed?, edx
edx,1

ed,ed?



EXAMPLES OF OBFUSCATED PROGRAMS

mov
rol
$1.094 :
mov
not
sub
shl
cmp
zchg
Jg
inc
cmp
mov
j1
not
mov
sub
mov
zor
mov
sub
sub
shr
mov
neg
XOor
rol
mov
rol
mov
or
mov
sub
$L124:
Jjmp
mov
$L126:
mov
sar
pop
add
ret

[ebp-8],edx ;oi++
edi, 21

eax, [ebp+12]
ebzx

eax,1
ebzx, 1

[ebp-8] ,eax
ecz, ebx

$L126
ecx

DWORD PTR [ebp-4],305419896
ecz, [ebp+12]

$L124
edz

ecx, [ebp-8]
edz, eax

edx, [ebp+8]
ebz, edz

eax, [ebp-8]
ebz, [ebp-8]

eax,DWORD PTR [edx+ecx*4+4]
ecz, 18

ecx, [ebp-4]
ebzx

ecx,eax
ebz, 20

edx, [ebp-8]
ebz,5

eax, [ebp+8]
ebz, ebp

; 1f (sum>0x12345678)

; sum”~i-code[i+1]

DWORD PTR [eax+edx*4],ecx ; code[i]l=sum”i-code[i+1]

eazr, ebx

$1L.088
eaz, [ebp-8]

esp,ebp
es1,10

ebp
[ebp-8], est

0

C.2.2 Version for MIPS processor

; for(...;i<len-1;...)

104

Program has properties similar to version for x86 processor. Result of analytical measures are:

e potency: length Er = 1.7; depth Ep = 5; flow Ep = 2.7; average potency Ilg = 0.58



EXAMPLES OF OBFUSCATED PROGRAMS 105

e resilience: weak

e cost: cheap

$L000:
; code=$4, len=$5
; sum=4($29), i=0($29)

subu $29,8 ; allocation of local variables
SW $0,4(%$29) ; sum=0
SW $0,0($29) ; 1=0
subu  $15,821,810
ble $5,0,$L032 ; for(...;i<len;...)
subu  $23,$15, %4
$1.006::
1w $14,4($29)
zor $16, $23, $23
1w $15,0(%$29)

move $27, %16

mul $24,%$15,4
srl $1,827,30

addu  $25,%$4,$24
sll $17,81,17

1w $8,0($25) ; codeli]
subu  $22, %17, 824

addu $9,%$14,$8

lw $25,4(829)
addu $10,%$4,%$24 ; sum+code[i]
zor $25,4(829), 82
1w $11,0(%$10)
and $1,%25,83
Xor $12,$9,%11 ; (sumt+codel[i]) “codel[il
lw $19,4(829)
SW $12,4($29) ; sum=(sum+code[i]) “code[i]

srl $19,0(829),0
addu $13,%$15,1
sla $19,0(829),0
SW $13,0(%$29) ;o 1++
and $17,819, $24
blt $13,%$5,$L006
sl $16,9

C.3 Decoding Program

Program was obfuscated using all methods of obfuscation, except of opaque constructs. Fre-
quency of blocks reordering was set on 0.2 (one branch every five instructions). Occurence of
dependencies between instructions changing not used part of context was turned on (Iz = 1).
The rescaling factor S = 3, caused triple growth of final program’s length.



EXAMPLES OF OBFUSCATED PROGRAMS 106

C.3.1 Version for x86 processor

This example shows concatenation of simple methods of insertion with blocks reordering. Anal-
ysis of program was slowed down significantly, because of many branches. The transformation
has following efficiency according to analytical measures:

e potency: length E; = 2.52; depth Ep = 1; flow Er = 18.0; average potency Ilg = 1.06

e resilience: weak

e cost: cheap

; i=ebp-4, j=ebp-8
; code=ebp+8, len=ebp+12, key=ebp+16

push  ebp

mov ebp,esp

dec DWORD PTR [ebp+8]

sub esp,8 ; allocation of local variables
add [ebp+8], [ebp-8]

rol ecx, 9

sub [ebp+8], [ebp-8]

mov DWORD PTR [ebp-8],-2023406815 ; j=0x87654321
add eazx, ece
mov DWORD PTR [ebp-4],0 ; i=0
sub [ebp-8] ,ecx
sar eazx, 22
jmp $L125
add ear, eax
mov eazx, est
$L015:
jmp  $L117
$1.020:
mov eax, [ebp+8]
mov ecx, [ebp-8]
sub [ebp+16] ,ebx
and est, [ebp-8]
mov DWORD PTR [eax+edx*4],ecx ; codeli]=j
sub ebx,105
neg est
jmp $L100
$1.030:
mov [ebp+16] ,ecx ; key=j key~0x12345678
rol edi, 16
xor [ebp-4] ,edi
mov edx, [ebp-4]
jmp $L020
$L.035:
mov [ebp-8] ,eax ; j =(codel[i] "key) <<25;
Tor ebz, ebzx



ror
mov
ror
neg
rol
XOr
jmp
$1.044 :
mov
sub
mov
xor
add
not
sub
Xor
shl
sub
dec
add
add
mov
jmp
$L059:
inc
inc
jmp
$L062:
xor
neg
mov
pop
Jjmp
$L067:
Xor
jmp
$L069:
jmp
$L073:
XO0or
dec
rol
jmp
$L079:
dec
shr
mov
mov

EXAMPLES OF OBFUSCATED PROGRAMS

edi, 16
ecx, [ebp-8]
ecx,21
ebz
ecx,21
ecx, [ebp+16] ; jkey
$1.073
ecx, [ebp+8]
[ebp-8],ebx
edx,DWORD PTR [ecx+eax*4] ; codeli]
[ebp-4] ,edi
edx,esi
DWORD PTR [ebp+16]
edx,esi
edx, [ebp+16] ; codel[i] “key
edx,25 ; (code[i] “key)<<25
[ebp-8],ecx
DWORD PTR [ebp+12]
[ebp-8] ,ecx
[ebp-8],ebx
eax, [ebp-8]
$L.067

DWORD PTR [ebp+12]
DWORD PTR [ebp+12]
$L015

[ebp+16] ,eax
DWORD PTR [ebp+8]
esp,ebp

ebp
$L095

eax,edx
$1.035

$L044

ecx,305419896 ; j"key 0x12345678
est
ecx,26
$L.103

ecx
ecx,7 ; (codel[i] “key)>>7
edx, [ebp-8]

edz, est

107



EXAMPLES OF OBFUSCATED PROGRAMS 108

rol ecx,31
ror ecx,31
Xor edx,ecx ; j~((codeli] “key)>>T7)
inc edx
dec edx

mov [ebp-8] ,edx ; j =(codeli] "key)>>7

zchg ebz,eax

mov eax, [ebp-4]
not DWORD PTR [ebp+16]
jmp $L069
$1L.093:
jmp $LO79
$L095:
ret 0
$L.100:

add ebx, 105
add [ebp+16] ,ebx

jmp $L059
$1.103:
ror ecx,26
jmp $L030
$1.105:
ja $L062 ; for(...;i<len;...)

mov edx, [ebp-4]
dec DWORD PTR [ebp+12]
neg DWORD PTR [ebp+8]

xor [ebp+16] ,eax
mov eax, [ebp+8]
mov ecx,DWORD PTR [eax+edx*4] ; codel[il
not eaxr
or edz, eax
Xor ecx, [ebp+16] ; codeli] “key
inc ecx
jmp $L093
$L117:
mov eax, [ebp—4]
neg DWORD PTR [ebp+8]
add eax,1
dec eax
neg eax
mov [ebp-4] ,eax ;o i++
xor [ebp+16] ,eax
add [ebp+12] ,esi
$L.125:

add [ebp-8] ,ecx
inc DWORD PTR [ebp+8]
neg  DWORD PTR [ebp+8]
xor [ebp+16] ,eax



EXAMPLES OF OBFUSCATED PROGRAMS 109

add [ebp+12] ,esi

mov ecx, [ebp-4]
sub [ebp+12] ,esi

cmp ecx, [ebp+12] ; i<len 777
jmp $L105

C.3.2 Version for MIPS processor

Program has properties similar to version for x86 processor. Results of analytical measures are:
e potency: length Fr = 2.58; depth Ep = 2; flow Er = 6.3; average potency Ilg = 0.98
e resilience: weak

e cost: cheap

; code=$4, len=$5, key=3%6
; 1=0($29), j=4($29)
$1.000:
subu $29,8 ; allocation of local variables
1i $14,-2023406815
addu  $14,$14,$31
subu $14,$14,$31

SW $14,4($29) ; J=0x87654321
sw $10,0(829)
SW $0,0(%$29) ; 1=0

subu  $22,$16, $4
xor $4,%$4,%12
xor $4,%4,%12
bleu $5,0,$L000 ; for(...;i<len;...)
sl $14,822,26
$L.012:
1w $15,4($29)
addu  $4,$4,%$21
subu  $15,$15, 140
b 30
$L022:
Xor $15,$13,%10
addu  $15,$15,%$28
subu $15,$15,%$28

SW $15,4($29) ; j7=(codel[i] “key)<<25
Tor $17,817
1w $11,4($29)
xor $4,%4,%1
b 69
$1L.030:
1w $24,0($29)

sl $17,814,17



EXAMPLES OF OBFUSCATED PROGRAMS

mul
subu
xor
Xor
subu

addu
1w
subu
subu
addu
XOr
zor
b
$L.045:
mul
addu
subu
b
$1.049:
srl
xor
Xor
addu
addu
XO0or
SW
subu
1w
addu
sla

$25,%$24,4
$22, 817, 824
$25,$25,$2
$25,$25,$2
$4,$4,$21

$8,$4,$25

$9,0(%8)
$15,$15,213
$6,%6,%4
$6,$6,%4

$10,%9,%6
$22,4(829), 82
49

$24,%$14,4
$18,4(829),$19
$17,$17,$21
84

$11,%10,7
$15,$15,44
$15,$15,44
$15,$15,213
$15,$15,140

$12,$15,%11

$12,4($29)
$4,$4,$17
$13,4($29)
$17,$17,$21
$18, 922,26

b

.
b

.
b

b

code[i]

code[i] “key

(code[i] “key)>>7

; j"=(codel[i] “key)>>7

110



Appendix D

Remaining Sources of Information

As in the case of any new problem, the basic source of information about code obfuscation
is Internet. There are about 29000 web pages containing phrase code obfuscation. These pages
can be classified on four useful categories according to they subject:

1. Educational pages.

e www.ioccc.org — methods of C source code obfuscation

e www.wikipedia.com/wiki/obfuscated+code — general description of the idea of
”code obfuscation”

e www.softpanorama.org/SE/reverse engineering links.shtml — set of links to
pages about reverse engineering

2. Scientific pages containing publications in different form.

e www.cs.arizona.edu/ collberg — Christian Collberg’s home page

e www.csee.uq.edu.au/"cristina — Cristina Ciffuentes’ home page

e www.cs.auckland.ac.nz/~cthombor — Clark Thomborson’s home page
e www.cs.washington.edu/homes/douglas — Douglas Low’s home page

e www.research.microsoft.com/~toddpro — Todd Proebsting’s home page
3. Pages containing different software for code obfuscation.

e www.vegatech.net/jzipper — JZipper: Java VM code obfuscation
e www.kotovnik.com/"avg — cshred.c: obfuscation of C source code

e www.syncfusion.com — code obfuscation of NET VM

4. Pages of the crackers’ subculture, containing mainly information about removing protec-
tion from programs.

e www.searchlores.org — Fravia: Mekka of crackers
e astalavista.box.sk — knowledge database about programs’ cracking
e www.cracking.pl — Polish source of information about crackers

e www.reverser-course.de — practical knowledge about reverse engineering

111



REMAINING SOURCES OF INFORMATION 112

From the pages presented in the tables some are really useful:

e home page of Christian Collberg — many articles and links to pages about obfuscation and
decompilation

e home page of Cristina Ciffuentes — source of knowledge about decompilation, especially
of type ,,from assembler do C”

e www.ioccc.org — open competition of source code obfuscation of program in C language

e Fravia — set of tools, tutorials, descriptions and essays about software protection, safety
and reverse engineering

e www.reverser—-course.de — a course of reverse engineering: useful tools, basics, practical
advices



