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Abstract

SSH is designedto provide a securechannelbetween
two hosts. Despitethe encryptionand authentication
mechanismsit uses,SSH hastwo weakness:First, the
transmittedpackets are paddedonly to an eight-byte
boundary(if a block cipheris in use),which revealsthe
approximatesizeof the original data. Second,in inter-
activemode,every individualkeystrokethatausertypes
is sentto theremotemachinein aseparateIP packet im-
mediatelyafterthekey is pressed,which leakstheinter-
keystroke timing information of users’typing. In this
paper, we show how theseseeminglyminor weaknesses
resultin serioussecurityrisks.

First we show that even very simple statistical tech-
niquessuffice to revealsensitive informationsuchasthe
lengthof users’passwordsorevenrootpasswords.More
importantly, we further show that by using more ad-
vancedstatisticaltechniqueson timing informationcol-
lectedfrom thenetwork, theeavesdroppercanlearnsig-
nificant informationaboutwhat userstype in SSH ses-
sions. In particular, we perform a statisticalstudy of
users’typing patternsand show that thesepatternsre-
veal informationaboutthekeys typed.By developinga
HiddenMarkov Model andour key sequenceprediction
algorithm,we canpredictkey sequencesfrom theinter-
keystroke timings. We further develop an attacker sys-
tem,Herbivore , whichtriesto learnusers’passwordsby
monitoringSSH sessions.By collectingtiming informa-
tion on thenetwork, Herbivorecanspeedup exhaustive
searchfor passwordsby a factorof 50. We alsopropose
somecountermeasures.

In generalour resultsapply not only to SSH, but also
to a generalclassof protocolsfor encryptinginteractive
traffic. We show that timing leaksopena new set of
security risks, and hencecautionmust be taken when
designingthis typeof protocol.
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1 Intr oduction

Justa few yearsago,peoplecommonlyusedastonish-
ingly insecurenetworking applicationssuch as tel-
net, rlogin, or ftp, which simply passall confi-
dential information, including users’passwords, in the
clear over the network. This situationwas aggravated
throughbroadcast-basednetworks thatwerecommonly
used(e.g.,Ethernet)which alloweda malicioususerto
eavesdropon the network and to collect all communi-
catedinformation[CB94, GS96].

Fortunately, many usersandsystemadministratorshave
becomeaware of this issue and have taken counter-
measures.To curb eavesdroppers,securityresearchers
designedthe SecureShell (SSH), which offers an en-
cryptedchannelbetweenthe two hostsand strongau-
thenticationof boththeremotehostandtheuser[Yl ö96,
SSL01, YKS

�
00b]. Today, SSH is quitepopular, andit

haslargely replacedtelnet andrlogin.

Many usersbelieve that they aresecureagainsteaves-
droppersif they useSSH. Unfortunately, in this paper
we show that despitestate-of-the-artencryptiontech-
niquesandadvancedpassword authenticationprotocols
[YKS

�
00a], SSH connectionscanstill leak significant

information about sensitive data such as users’ pass-
words. This problemis particularlyseriousbecauseit
meansusersmay have a false confidenceof security
whenthey useSSH.

In particularweidentify thattwoseeminglyminorweak-
nessesof SSH leadto serioussecurityrisks. First, the
transmittedpackets are paddedonly to an eight-byte
boundary(if a block cipher is in use). Thereforean
eavesdroppercaneasilylearntheapproximatelengthof
the original data. Second,in interactive mode, every
individual keystroke that a usertypesis sentto the re-
mote machinein a separateIP packet immediatelyaf-
ter the key is pressed(exceptfor somemetakeys such
Shift or Ctrl). We show in thepaperthat this prop-
ertycanenabletheeavesdropperto learntheexactlength
of users’passwords.More importantly, aswehaveveri-
fied,thetimeit takestheoperatingsystemto sendoutthe
packet after the key pressis in generalnegligible com-
paring to the inter-keystroke timing. Hencean eaves-



droppercanlearnthepreciseinter-keystroke timingsof
users’typing from thearrival timesof packets.

Experienceshows thatusers’typing follows stablepat-
terns1. Many researchershave proposedto usethe du-
ration of key strokesandlatenciesbetweenkey strokes
asa biometricfor userauthentication[GLPS80, UW85,
LW88, LWU89, JG90, BSH90, MR97, RLCM98,
MRW99]. A morechallengingquestionwhich hasnot
yet beenaddressedin the literatureis whetherwe can
usetiming informationaboutkey strokesto infer thekey
sequencesbeingtyped.If wecan,canweestimatequan-
titatively how many bits of informationarerevealedby
the timing information? Experienceseemsto indicate
that the timing informationof keystrokesrevealssome
informationaboutthe key sequencesbeing typed. For
example,wemighthaveall experiencedthattheelapsed
time betweentyping the two letters“er” can be much
smallerthanbetweentyping “qz”. This observation is
particularly relevant to security. Sinceaswe show the
attackercangetpreciseinter-keystroketimingsof users’
typing in a SSH sessionby recordingthepacket arrival
times,if theattacker caninfer whatuserstypefrom the
inter-keystroke timings, thenhe could learnwhat users
typein aSSH sessionfrom thepacket arrival times.

In this paperwe study users’keyboarddynamicsand
show thatthetiming informationof keystrokesdoesleak
information about the key sequencestyped. Through
moredetailedanalysisweshow thatthetiming informa-
tion leaksabout1 bit of informationaboutthe content
per keystroke pair. Becausethe entropy of passwords
is only 4–8 bits per character, this 1 bit per keystroke
pair informationcanrevealsignificantinformationabout
the contenttyped. In order to useinter-keystroke tim-
ings to infer keystroke sequences,we build a Hidden
Markov Modelanddevelopan-Viterbi algorithmfor the
keystroke sequenceinference.To evaluatetheeffective-
nessof the attack,we further build an attacker system,
Herbivore,whichmonitorsthenetwork andcollectstim-
ing information aboutkeystrokes of users’passwords.
Herbivore thenusesour key sequencepredictionalgo-
rithm for password prediction. Our experimentsshow
that,for passwordsthatarechosenuniformly at random
with lengthof 7 to8characters,Herbivorecanreducethe
costof password crackingby a factorof 50 andhence
speedup exhaustive searchdramatically. We alsopro-
posesomecountermeasuresto mitigatetheproblem.

Weemphasizethattheattacksdescribedin thispaperare
a generalissuefor any protocolthatencryptsinteractive
traffic. For concreteness,we studyprimarily SSH, but
theseissuesaffectnotonlySSH 1 andSSH 2, but also

1In this paperwe only consideruserswho arefamiliar with key-
boardtypingandusetouchtyping.

any otherprotocolfor encryptingtypeddata.

The outline of this paperis as follows. In Section2
we discussin more details about the vulnerabilities
of SSH and varioussimple techniquesan attacker can
use to learn sensitive information such as the length
of users’passwordsand the inter-keystroke timings of
users’passwords typed. In Section3 we presentour
statisticalstudyon users’typing patternsandshow that
inter-keystroke timingsrevealabout1 bit of information
perkeystrokepair. In Section4 wedescribehow wecan
infer key sequencesusinga HiddenMarkov Model and
a n-Viterbi algorithm. In Section5 we describethede-
sign,developmentandevaluationof anattacker system,
Herbivore,whichlearnsusers’passwordsby monitoring
SSH sessions.We proposecountermeasuresto prevent
theseattacksin Section7, andconcludein Section8.

2 Eavesdropping SSH

TheSecureShellSSH [SSL01, YKS
�

00b] is usedto en-
crypt thecommunicationlink betweena localhostanda
remotemachine.Despitetheuseof strongcryptographic
algorithms,SSH still leaksinformationin two ways:

� First, thetransmittedpacketsarepaddedonly to an
eight-byteboundary(if a block cipher is in use),
which leaks the approximatesize of the original
data.

� Second, in interactive mode, every individual
keystroke that a user types is sent to the remote
machinein a separateIP packet immediatelyafter
thekey is pressed(exceptfor somemetakeys such
Shift orCtrl). Becausethetimeit takestheop-
eratingsystemto sendout thepacket after thekey
pressis in generalnegligiblecomparingto theinter-
keystroke timing (as we have verified), this also
enablesan eavesdropperto learnthe preciseinter-
keystroke timingsof users’typing from thearrival
timesof packets.

The first weaknessposessomeobvious securityrisks.
For example, when one logs into a remotesite R in
SSH, all the charactersof the initial login password
are batchedup, paddedto an eight-byteboundaryif a
block cipheris in use,encrypted,andtransmittedto R.
Due to the way paddingis done,an eavesdroppercan
learn one bit of information on the initial login pass-
word, namely, whetherit is at least7 characterslong
or not. Thesecondweaknesscanleadto somepotential
anonymity risks since,asmany researchershave found
previously, inter-keystroke timings canreveal the iden-
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Figure1: Thetraffic signatureassociatedwith runningSU in aSSH session.Thenumbersin thefigurearethesize
(in bytes)of thecorrespondingpacket payloads.

tity of theuser[GLPS80, UW85, LW88, LWU89, JG90,
BSH90, MR97, RLCM98, MRW99].

In thissection,weshow thatseveralsimpleandpractical
attacksexploiting thesetwo weaknesses.In particular,
anattackercanidentify whichtransmittedpacketscorre-
spondto keystrokesof sensitive datasuchaspasswords
in a SSH session.Using this information, the attacker
caneasilyfind out theexact lengthof users’passwords
andeventhepreciseinter-keystroketimingsof thetyped
passwords. Learning the exact length of users’ pass-
words allows eavesdroppersto target userswith short
passwords. Learningthe inter-keystroke timing infor-
mationof the typedpasswordsallows eavesdroppersto
infer the contentof the passwords as we will show in
Section3 and4.

Traffic Signature Attack We canoftenexploit prop-
ertiesof applicationsto identify which packets corre-
spondto the typing of a password. Consider, for in-
stance,theSU command.Assumethe userhasalready
establisheda SSH connectionfrom local host A to re-
mote host B. When the user types the commandSU
in the establishedSSH connectionA � B, we obtaina
peculiartraffic signatureas shown in Figure 1. If the
SSH sessionusesSSH 1.x2 and a block cipher such
asDESfor theencryption[NBS77, NIS99], asis com-
mon, then the local host A sendsthree20-bytepack-
ets: “s”, “u”, “Return”. The remotehostB echoesthe
“s” and“u” in two 20-bytepacketsandsendsa 28-byte
packet for the “Password: ” prompt. ThenA sends20-
byte packets,one for eachof the password characters,
without receiving any echodatapackets. B thensends
somefinal packetscontainingtherootpromptif SU suc-
ceeds,otherwisesomefailuremessages.Thusby check-
ing the traffic against this “su” signature,the attacker
canidentify whentheuserissuestheSU commandand

2Theattackalsoworkswhenssh 2.x is in use.Only thepacket
sizesareslightly different.

hencelearnwhich packetscorrespondto the password
keystrokes. Note thatsimilar techniquescanbeusedto
identify when userstype passwords to authenticateto
otherapplicationssuchasPGP[Zim95] in a SSH ses-
sion.

Multi-User Attack Evenmorepowerful attacksexist
when the attacker also has an accounton the remote
machinewhere the user is logging into throughSSH.
For example, the processstatuscommandps can list
all the processesrunningon a system.This allows the
attacker to observe eachcommandthatany useris run-
ning. Again, if theuseris runningany commandthatre-
quiresapasswordinput(suchassu orpgp) theattacker
canidentify the packetscorrespondingto the password
keystrokes.

NestedSSH Attack Assumethe userhasalreadyes-
tablisheda SSH sessionbetweenthe local host A and
remotehostB. Thentheuserwantsto openanotherSSH
sessionfrom B to anotherremotehostC asshown in Fig-
ure2. In thiscase,theuser’spassword for C is transmit-
ted, onekeystroke at a time, acrosstheSSH-encrypted
link A � B from the user to B, even thoughthe SSH
client on machineB patientlywaits for all charactersof
the password beforeit sendsthemall in onepacket to
hostC for authentication(asdesignedin theSSH proto-
col [YKS

�
00a]). It is easyto identify suchanestedSSH

connectionusing techniquesdevelopedby Zhangand
Paxson[ZP00b, ZP00a]. Hencein this casethe eaves-
droppercaneasilyidentify thepacketscorrespondingto
theuser’s password on link A � B, andfrom this learn
the lengthandthe inter-keystroke timings of the users’
passwordonhostC.
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3 Statistical Analysis of Inter -keystroke
Timings

As a first study towardsinferring key sequencesfrom
timing information,wedeveloptechniquesfor statistical
analysisof the inter-keystroke timings. In this section,
we first describehow we collect trainingdataandshow
somesimple timing characteristicsof characterpairs.
We thenshow how we modeltheinter-keystroke timing
of a givencharacterpair asa Gaussiandistribution. We
thendescribehow to estimatequantitatively theamount
of informationaboutthecharacterpairthatonecanlearn
usingtheinter-keystroketiming information.Denotethe
setof characterpairsof interestasQ, andlet

�
Q
�
denote

thecardinalityof thesetQ.

3.1 Data Collection

The two keystrokesof a pair of characters� ka � kb 	 gen-
eratesfour events: thepressof ka, thereleaseof ka, the
pressof kb, and the releaseof kb. However, because
only key presses(not key releases)triggerpacket trans-
mission,aneavesdroppercanonly learntiming informa-
tion aboutthekey-pressevents.Sincethemainfocusof
our study is in the scenariowherean adversarylearns
timing informationon keystrokesby simply monitoring
the network, we focus only on key-pressevents. The
timedifferencebetweentwo key pressesis calledthela-
tencybetweenthetwo keystrokes.We alsousetheterm
inter-keystroketiming to referto thelatency betweentwo
keystrokes.

In orderto characterizehow muchinformationis leaked
by inter-keystroketimings,wehaveperformedanumber
of empiricalteststo measurethe typing patternsof real
users. Becausepasswords are probablythe most sen-
sitive datathat a userwill ever type, we focusonly on
informationrevealedaboutpasswords(ratherthanother
formsof interactive traffic).

Our focuson passwordscreatesmany challenges.Pass-
wordsareenteredverydifferentlyfrom othertext: pass-
wordsaretypedfrequentlyenoughthat,for many users,
the keystroke patternis memorizedandoften typedal-
most without consciousthought. Furthermore,well-
chosenpasswordsshouldbe randomandhave little or
no structure(for instance,they shouldnot be basedon
dictionary words). As a consequence,naive measure-
mentsof keystroke timingswill not berepresentative of
how userstype passwordsunlessgreatcareis taken in
thedesignof theexperimentalmethodology.

Our experimentalmethodologyis carefullydesignedto
addresstheseissues.Dueto securityandprivacy consid-
erations,we chosenot to gatherdataon realpasswords;
therefore,we have chosena datacollection procedure
intendedto mimic how userstype real passwords. A
conservative methodis to pick a randompassword for
the user(whereeachcharacterof the password is cho-
senuniformly at randomfrom asetof 10 letterkeysand
5 numberkeys, independentlyof all othercharactersin
the password), have the userpracticetyping this pass-
word many timeswithout collectingany measurements,
andthenmeasureinter-keystroke timing informationon
thispasswordoncetheuserhashadachanceto practice
it at length.

However, we found that, when the goal is to try to
identify potentially relevant timing properties(rather
thanverify conjecturedproperties),thisconservativeap-
proachis inefficient. In particular, userstypically type
passwordsin groupsof 3–4characters,with fairly long
pausesbetweeneachgroup. This distortsthe digraph
statisticsfor the pair of charactersthat spansthe group
boundaryand artificially inflates the varianceof our
measurements.As a result we would needto collect
a great deal of data for many randompasswords be-
fore this effect would averageout. In addition,it takes
quiteawhile for usersto becomefamiliarwith longran-
dompasswords.Thismakestheconservativeapproacha
ratherblunttool for understandinginter-keystrokestatis-
tics.

Fortunately, there is a lesscostly way to gather inter-
keystroke timing statistics: we gathertraining dataon
eachpair of characters� ka � kb 	 astypedin isolation.We
pick acharacterpairandasktheuserto typethispair30–
40 times,returningto thehomerow eachtime between
repetitions.For eachuser, we repeatthis for many pos-
siblepairs(142pairs,in ourexperiments)andwegather
dataon inter-keystroke timings for eachsuchpair. We
collectedthelatency of eachcharacterpairmeasurement
and computedthe meanvalue and the standarddevia-
tion. In ourexperience,thisgivesbetterresults.
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Figure3: Thedistributionof inter-keystroke timingsfor two samplecharacterpairs.

As an example,Figure 3 shows the latency histogram
of two samplecharacterpairs. The left model corre-
spondsto the latency betweenthe pair � v, o 	 , and the
right modelcorrespondsto � v, b 	 . We canseethat the
latency between � v, o 	 is clearly shorterthan the la-
tency between� v, b 	 , and the latency distributions of
thesetwo samplecharacterpairsarealmostentirelynon-
overlapping.

Theoptimizeddatacollectionapproachgivesusa more
efficient way to study fine-grained details of inter-
keystrokestatisticswithout requiringcollectinganenor-
mousamountof data.Weuseddatacollectedin thisway
to quickly identify plausibleconjectures,developpoten-
tial attacks,and to train our attackmodels. As far as
we areaware,collectingdataon keystroke pairsin iso-
lationdoesnotseemto biasthedatain any obviousway.
Nonetheless,we also validateall our resultsusing the
conservative measurementmethod(seeSection5).

3.2 SimpleTiming Characteristics

Next, we divide the test characterpairs into five cate-
gories,basedon whetherthey aretypedusingthesame
hand,thesamefinger, andwhetherthey involve a num-
berkey:

� Two letter keys typedwith alternatinghands,i.e.,

onewith left handandonewith right hand;

� Two characterscontainingone letter key and one
numberkey typedwith alternatinghands;

� Two letterkeys,bothtypedwith thesamehandbut
with two differentfingers;

� Two letter keys typedwith the samefinger of the
samehand;

� Two characterscontainingone letter key and one
numberkey, bothtypedwith thesamehand.

Figure4 shows the histogramof latency distribution of
characterpairsfor eachcategory. We split thewholela-
tency rangeinto six binsasshown in thex-axis. Within
eachcategory, we put eachcharacterpair into the cor-
respondingbin if its meanlatency value is within the
rangeof the bin. Eachbar in the histogramof a cate-
goryrepresentstheratioof thenumberof characterpairs
in theassociatedbin over the total numberof character
pairsin thecategory.3 We canseethatall thecharacter
pairsthat aretypedusingtwo differenthandstake less
than150milliseconds,while pairstypedusingthesame
handandparticularlythesamefinger take substantially
longer. Characterpairsthatalternatebetweenoneletter
key andonenumberkey, but aretypedusingthe same

3Hencethesumof all barswithin onecategory is 1.
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hand,take the longesttime to type. This is simply be-
causetwo handsoffer a certainamountof parallelism,
while characterpairstypedwith onehandrequirea cer-
tain degreeof sequentialmovementsandhencetendto
take longer. This is especiallyobviousin thecaseof one
letterandonenumberpairstypedusingonehand.They
in generalrequiremorehandmovementandhencethe
longesttime.4

So, if the attacker observesa characterpair typedwith
latency morethan150 milliseconds,he canguesswith
high probabilityof successthat thecharacterpair is not
typed using two different handsand hencecan infer
about1 bit of informationaboutthecontentof thechar-
acterpair. Becausethe 142 characterpairsareformed
from randomly selectedletter keys and numberkeys,
they seemlikely to form a representative sampleof the
whole keyboard. Hencethis simple classificationex-
tendsto thewholekeyboard,andalreadyindicatesthat
the inter-keystroke timing leakssubstantialinformation
aboutwhatis typed.

The propertiesdescribedabove are unlikely to be ex-
haustive. For instance,earlier work on timing attacks
on multi-usermachinessuggestedthat inter-keystroke
timingsmayadditionallyrevealwhich charactersin the

4Notethathereweonly considerusersthatusetouchtyping.

passwordareupper-case[Tro98].

3.3 GaussianModeling

Fromtheplot of thelatency distributionof agivenchar-
acterpair, suchastheonesshown in Figure3,wecansee
that the latency betweenthe two key strokesof a given
characterpair formsa Gaussian-like unimodaldistribu-
tion. Hencea naturalassumption(which is confirmed
by our empiricalobservations)is that theprobabilityof
thelatency y betweentwo keystrokesof a characterpair
q 
 Q, Pr� y� q� , formsa univariateGaussiandistribution � µq � σq 	 , meaning

Pr� y� q��� 1�
2πσq

e�
�
y� µq � 2

2σ2
q �

whereµq is themeanvalueof the latency for character
pair q andσq is the standarddeviation. Given a setof
trainingdata � � qi � yi 	�� 1 � i � N, whereqi is the i-th charac-
ter pair andyi is the correspondinglatency in the data
collection,we canderive the parameters� � µq � σq 	�� q � Q
basedon maximumlikelihoodestimation,i.e., we com-
putethemeanandthestandarddeviation for eachchar-
acterpair.

Figure5 showstheestimatedGaussianmodelsof thela-
tenciesof the 142 characterpairs. Our empiricalresult
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shows that most of the latenciesof the characterpairs
lie between50 and 250 milliseconds. The averageof
thestandarddeviationof the142characterpairsis about
30 milliseconds. The graphalso indicatesthat the la-
tency distributionsof the characterpairsseverely over-
lap, which meansthe inferenceof characterpairsusing
just latency informationis achallengingtask.

3.4 Inf ormation Gain Estimation

We would like to estimatequantitatively how much
information the latency information reveals about the
characterpairs typed. This will be an upper bound
of how much informationan attacker canextract from
the timing information using any particular method.
We estimateit by computingthe information gain in-
ducedby the latency information. If we selecta char-
acter pair uniformly at random from the character-
pair space,and if the attacker doesnot get any addi-
tional information, the entropy of the probability dis-
tribution of characterpairs to the attacker is H0 � q���� ∑q � QPr� q� log2Pr� q��� log2

�
Q
���

If the attacker learns
the latency y0 betweenthe two keystrokesof the char-
acterpair, the estimatedentropy of the probability dis-
tribution of characterpairs to the attacker is H1 � q� y �
y0��� � ∑q � QPr� q� y0� log2Pr� q� y0� � where Pr� q� y0� �

Pr! y0 " q#%$ Pr! q#
∑q& Q Pr! y0 " q#%$ Pr! q# � and Pr� y0

�
q� is computed using the

Gaussiandistribution obtainedin theparameterestima-
tion phasein the previous subsection.The information
gain inducedby theobservationof latency y0 is thedif-
ferencebetweenthetwo entropies,H0 � q� � H1 � q� y � y0� �
Using the parameterestimationof the 142 character
pairsobtainedin the previous section,we cancompute
H1 � q� y � y0� andH0 � q� � H1 � q� y � y0� asshown in Fig-
ure6(a)andFigure6(b).

The estimatedinformationgain, alsocalledmutual in-
formation, is I � q;y�'� H0 � q� � H1 � q� y�(� H0 � q� � Pr� y0�*)
H1 � q� y � y0� dy0 � where Pr� y0�+� ∑q � QPr� y0

�
q� Pr� q� �

FromthenumericalcomputationweobtainI � q;y�,� 1
�
2.

This meansthe estimatedinformation gain available
from latency information is about1

�
2 bits per charac-

terpairwhenthecharacterpairhasuniformdistribution.
Hencethe attacker could potentiallyextract 1

�
2 bits of

informationper characterpair by using the latency in-
formation in this case. Becausethe characterpairs in
our experimentsareselecteduniformly at randomfrom
all letter andnumberkeys, we expect that they will be
representative of the whole keyboard. Intuitively, Fig-
ure5 is a sufficiently-largerandomsamplingof a much
densergraphcontainingthe latency distributionsof all
possiblecharacterpairs. More detailedanalysisshows
thattheestimatedinformationgain computedusing142
samplecharacterpairs is a goodestimateof the infor-



mationgain whenthe character-pair spaceincludesall
letterandnumbercharacterpairs.This estimateis com-
parableto the back-of-the-envelopecalculationin Sec-
tion 3.2 basedon our classificationinto five categories
of keystroke pairs.

Becausetheentropy of written Englishis so low (about
0.6–1.3bits percharacter[Sha50]), the1

�
2-bit informa-

tiongainpercharacterpairleakedthroughthelatency in-
formationseemsto besignificant.5 For example,wecan
expect that users’PGP passphraseswill often contain
only 1 bit of entropy percharacter. Hencethelatency in-
formationmayrevealsignificantinformationaboutPGP
passphrases.

Theinformationgain curve in Figure6(b) shows a con-
vex shape.Notethatlatenciesgreaterthan175millisec-
ondsarerelatively rare;however, whenever we seesuch
a long time betweenkeystrokes, we learn a lot of in-
formationaboutwhat wastyped,becausetherearenot
many possibilitiesthat would lead to sucha large la-
tency. The characterpairs that take longer than 175
millisecondsto typearemostlypairscontainingnumber
keys or pairstypedwith onefinger. Hencethis analysis
suggeststhatpasswordscontainingnumberkeysor char-
acterpairsthataretypedwith onefingerareparticularly
vulnerableto suchtiming attacks.

Another interestingobservation is that the meanof the
standarddeviationsof the characterpairs is only about
30 millisecondsasshown in our experiments,while the
standarddeviation of round-triptime on the Internetin
many casesis lessthan10 milliseconds[Bel93]. There-
fore even whenthe attacker is far from theSSH client
host,hecanstill getsufficiently-preciseinter-keystroke
timing information. This makesthe timing attackeven
moresevere.

4 Inferring Character SequencesFrom
Inter -KeystrokeTiming Inf ormation

In this section,we describehow we can infer charac-
ter sequencesusingthe latency information. In partic-
ular, we modeltherelationshipof latenciesandcharac-
ter sequencesasa HiddenMarkov Model [RN95]. We
extendthestandardViterbi algorithmto ann-Viterbi al-
gorithm that outputsthe n most likely candidatechar-
actersequences.We furtherestimatehow many bits of
informationabouttherealcharactersequencethis algo-

5Notethat the1 - 2-bit informationgain is estimatedfor thecaseof
randomlyselectedpasswordswherethe sequenceof charactershave
a uniform distribution. However, this is not the casefor texts. More
careful calculationis neededto estimatethe informationgain in the
caseof natualtext.

rithm extractsfrom the latency informationandshow it
is nearlyoptimal.

4.1 Hidden Mark ov Model

In general,a Markov Model is a way of describinga
finite-statestochasticprocesswith thepropertythat the
probabilityof transitioningfrom thecurrentstateto an-
otherstatedependsonly on thecurrentstate,not on any
prior stateof theprocess[RN95]. In a HiddenMarkov
Model(HMM), thecurrentstateof theprocesscannotbe
directly observed. Instead,someoutputsfrom thestate
areobserved,andtheprobabilitydistributionof possible
outputsgiven the stateis dependentonly on the state.
UsingaHMM, onecaninfer informationabouttheprior
paththeprocesshastakenfromthesequenceof observed
outputsof thestates,andefficient algorithmsareknown
for workingwith HMM’ s. Becauseof this,HMM’ shave
beenwidelyusedin areassuchasspeechrecognitionand
text modeling.

In our setting,we considereachcharacterpair of inter-
estasa hidden(non-observable)state,and the latency
betweenthe two keystrokesof the characterpair asthe
outputobservation from the character-pair state. Each
statecorrespondsto a pair of characters,sothatthetyp-
ing of a charactersequenceK0 � �.��� � KT , is a processthat
goesthroughT states,q1 � ���.� � qT , whereqt � 1 / t / T 	
representsthe t-th characterpair � Kt � 1 � Kt 	 typed. Let
yt � 1 / t / T 	 denotethe observed latency of stateqt .
Thenwe modelthe typing of a charactersequenceasa
HMM. Thismeanswemake two assumptions.First, the
probabilityof transitionfrom thecurrentstateto another
stateis only dependenton the currentstate,not on the
prior pathof theprocess.If thecharactersequenceis a
password chosenuniformly at random,this assumption
obviouslyholds.In thecaseof text, thisassumptiondoes
not hold strictly but experiencein speechrecognition
andtext modelingshows thatsomeextensionsto HMM
still work well [RN95]. Second,the probability distri-
bution of the latency observation is only dependenton
thecurrentcharacterpair andnot on any previouschar-
actersin thesequence.This assumptionmight hold for
somecasesandnot for othercaseswherethe typing of
previouscharacterschangesthepositionof thehandand
influencesthe typing of later characterpairs. However,
making this assumptionmakes our analysisand infer-
encealgorithmmuchsimplerandstill givesgoodresults
asshown from theexperiments.Hence,we usea HMM
to modelthe typing of charactersequencesasshown in
Figure7.

As in the previous section,we assumethe setof possi-
ble characterpairsis Q, hencethesetof possiblestates
in the HMM is Q. We assumethat the probability of
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Figure7: A representationof a traceof a HMM. Eachvertical slice representsa time step. In eachtime slice, the
top nodeqt is a variablerepresentinga characterpair, andthebottomnodeyt is theobservablevariabledenotingthe
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the latency y of a characterpair q, Pr� y� q� (q 
 Q), is a
Gaussiandistribution

 � µq � σq 	 , wheretheparameters� � µq � σq 	4� q � Q are obtainedusing the maximumlikeli-
hoodestimation.

4.2 The n-Viterbi Algorithm for Character Se-
quenceInfer ence

Givenanobservation 5y � � y1 � y2 � �.��� � yT 	 , a sequenceof
latenciesof somecharactersequencefrom a user’s typ-
ing, we would like to infer the real charactersequence
that theuserhastyped. For eachpossiblecharacterse-
quence5q � � q1 � q2 � ���.� � qT 	 , we cancomputehow likely
thecharactersequenceis giventheobservation,namely
Pr� 5q � 5y� � TheprobabilityPr� 5q � 5y� essentiallygivesarank-
ing for the candidatecharactersequence5q: the higher
Pr� 5q � 5y� is, the more likely 5q is the real characterse-
quence.We use 5q 6 to denotethemost-likely sequence,
which is the sequencethat correspondsto the highest
valueof Pr�75q� 5y� for all possible5q with regardto a given5y.

TheViterbi algorithmis widely usedin solvingthemost
likely sequenceof statesgivenasequenceof observation
in HMM problems[RN95]. An naivewayof computing5q 6 would computePr�75q� 5y� for all possible5q, andhence
requiresO � �Q� T 	 running time. The Viterbi algorithm
usesdynamicprogrammingfor arunningtimecomplex-
ity O � �Q� 2T 	 .
In our setting,becausethe latency distributionsof dif-
ferentcharacterpairshighly overlap,theprobabilitythat
the most likely sequenceis the right sequencewill be
very low. Hence,insteadof just computingthe most
likely sequence,we needto computethe n most likely
sequencesandhopethe real sequencewill be in the n
mostlikely sequenceswith highprobabilityfor n greater
thana certainthreshold.Hencewe extendthestandard
Viterbi algorithm to n-Viterbi algorithm to output the
n most-likely sequenceswith running time complexity

O � n�Q� 2T 	 . We give a detaileddescriptionof the n-
Viterbi algorithmin AppendixA.

4.3 How to Estimate the Effectivenessof the n-
Viterbi Algorithm

Wewould like to estimatehow big thethresholdn hasto
be suchthat the real charactersequencewill be among
then most-likely sequenceswith sufficiently high prob-
ability. In an experimentif the real charactersequence
appearsin thenmost-likelysequences,wesaytheexper-
iment is a successwith regard to thethresholdn, other-
wise,a failure. Theprobabilityof suchdefinedsuccess
is a function of n. It is easyto seethat the function is
monotonicallyincreasingwith regardto n. If for asmall
n, thesuccessprobabilityis alreadyhigh, thismeansthe
algorithmis very effective becauseit filters out mostof
the sequencesandhenceoneonly needsto try a small
setof candidatesbeforefinding the real sequence.On
theotherhand,if we needa high thresholdof n to geta
sufficiently high successprobability, thenthealgorithm
is lesseffective: onewould needto try many morecan-
didatesbeforefinding therealsequence.Notethatfrom
Section3.4 we seethat the timing information reveals
about 1

�
2 bits of information per characterpair. For

the caseof a randompassword of lengthT 8 1, which
forms T consecutive characterpairs, the latency infor-
mation could reveal approximately1

�
2T bits of infor-

mationabouttherealpassword sequence.Hencethis is
anupperboundon theeffectivenessof thealgorithmto
infer charactersequencesusinglatency information.We
would like to estimatehow closeour algorithmis com-
paredto theupperbound.

First, we look at the simplecasewhenT � 1. Given a
latency observationy of a characterpair q, we compute
the probability Pr� q9 � y� � q9:
 Q� and selectthe n most-
likely characterpairsΦ �;� q j1 � �.�.� � q jn � . Wewould like
to computetheprobability that therealcharacterpair q
is in thesetΦ over all possiblevaluesof y. To simplify
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Figure 8: The probability that the n-Viterbi algorithm
outputsthe correctpassword beforethe first n guesses,
graphedasa functionof n.

the numericalcomputation,we approximatethe result
by assumingthatall theGaussiandistributionshave the
samestandarddeviation σ . This is a goodapproxima-
tion of the real experiment: aswe seein the Figure5,
mostkeypairshave a standarddeviation between25–35
milliseconds.

Figure 8 graphsthe probability that the real character
pair appearswithin the n most-likely characterpairs
againstthe thresholdn. The top curve is whenσ � 25,
themiddlecurve is whenσ � 30,andthebottomcurve
is when σ � 35

�
Using the middle curve, we get that

whenn � 70 the probability of successis 90%, mean-
ing that with 90% probability, the real characterpair
appearsin the 70 most-likely sequencesoutput by the
n-Viterbi algorithm. Let’s denotesucha thresholdcor-
respondingto the 90% successprobability asn6 . Thus
log2 � �Q�=< n6 	 � 1 is the approximatenumberof bits of
information per characterpair the algorithm extracts.
Note that from the previous sectionwe seethat the la-
tency informationrevealsabout1

�
2 bits of information

percharacterpair. Henceourn-Viterbialgorithmisnear-
optimal.

In thecaseof uniformly randomlychosenpasswordsof
lengthT 8 1, thenumberof bitsof informationthealgo-
rithm canextractis approximatelyT ) log2 � �Q�=< n6 	?> T,
which is closeto theoptimalvalue1

�
2T bits.

5 Building Herbivore and Timing Attacks
on SSH

To evaluatethe effectivenessof our timing attacksto
SSH, we build an attacker programthat we call Herbi-
vore. In this section,we describetheexperimentresults
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Figure9: TheHerbivorearchitecture.

of usingHerbivoreto learnusers’passwords.

5.1 HerbivorePreying for Passwords

We built anattacker engineHerbivoreasshown in Fig-
ure 9. It monitorsthe network andcollectsthe arrival
timesof packets.Usingthetechniquedescribedin Sec-
tion 2, Herbivoreinferswhichpacketscorrespondto the
user’sSSH passwordswhentheuseropensanSSH ses-
sion to anotherhostwithin anestablishedSSH connec-
tion. Herbivorethenmeasurestheinter-arrival timesbe-
tweenpackets containingthe password charactersand
usesour n-Viterbi algorithmto generatea list of candi-
datepasswords. The candidatepasswordsaresortedin
decreasingorderof the probability Pr�75q � y� , and in our
experimentswe recordthepositionof therealpassword
in thecandidatelist. We reportthepositionof thepass-
word asa percentage,so with m possiblepasswordsin
total, if therealpasswordappearsatpositionu in theor-
deredcandidatelist, wesaytherealpasswordappearsat
the top 100u

m %. This givesa naturalway to quantify the
effectivenessof ourapproach.

5.2 Optimization for Long Character Se-
quences

Thecomplexity of then-Viterbi algorithmis linearin the
numbern of candidatesit outputs.As the lengthof the
password grows, thespaceof possiblepasswordsgrows
exponentially. If the n-Viterbi algorithmcanonly rule
out a constantfraction of the password space,n would
alsogrow exponentiallyasthe password lengthgrows.
Hencethealgorithmmightbeinefficientwhenthepass-
word is long. In particular, we observed that memory
usagecangrow substantiallyfor longerpasswords.

Also, andmoreimportantly, we observed in theexperi-
mentsthatuserstendto typelongpasswordsin segments
of 3 to 5 lettersandpausebetweenthesegments.If we
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Figure10: The percentageof the password spacetried
by Herbivore in 10 testsbeforefinding the right pass-
word.

usethetiming betweenthesegmentsfor theprediction,
it might biasour predictionssincetypically suchpauses
arenoticeablylongerthanmostotherinter-keystroke la-
tencies. Fortunately, this large differencemeansthat
pausesbetweengroupsof password characterscan be
clearly identified before we apply the n-Viterbi algo-
rithm.

Henceto reducethebiasandto reducethememoryre-
quirementsof thealgorithm,we breakthetiming infor-
mationof thepassword into segmentscontaining3 or 4
latency intervals. We useeachsegmentto form a HMM
and then at the end combinethe result from different
segmentsto form thecandidatepasswordordering.

5.3 Experimental Results for Password Infer -
encefor a SingleUser

Wemeasuretheeffectivenessof ourn-Viterbi algorithm
atcrackingpasswordsthroughempiricalmeasurements.
In our experiment,we usetraining datacompiledfrom
isolatedkeypairsto traintheHMM. Then,wepick aran-
dom password for the user. We have the userusethis
password to authenticateto anotherSSH sessionwithin
an establishedSSH sessionas shown in Figure 9, and
we apply our n-Viterbi algorithmto simulatean attack
on this password. Note that we have the testusertype
thepasswordmany timesbeforethetestto ensurefamil-
iarity with thepassword,andwetry to deducetheuser’s
passwordusingtrainingdatafrom thesameuser.

All passwordsareselecteduniformly atrandomfrom the
characterspaceasin theexperimentin Section3,sothey
containno structure.Recoveringsuchpasswordsis the
hardestcasefor theattacker, soif timing analysiscanre-
cover informationin suchascenario,wecanexpectthat
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Figure11: A comparisonof two users’typing patterns.
The “diamond” symbolsshow the meanvaluesof the
latenciesof one user, with an error-bar indicating one
standarddeviation. The“x” symbolindicatesthemean
valuesof thelatenciesof anotheruser.

timing analysiswill beanevengreaterthreatin settings
wherepasswordsarechosenlesscarefully.

We performedtestsfor 10 differentpasswords,eachof
length8. Figure10showsthepercentageof thepositions
of therealpassword in theorderedcandidatelistsoutput
by the n-Viterbi algorithm. For example,0

�
3% means

thattherealpasswordappearedat thetop0
�
3%position

in theoutputcandidatelist. Theseexperimentsindicate
that on averagethe real password is locatedwithin the
top 2

�
7% of thecandidaterankinglist. Themedianpo-

sition is about1%, soabouthalf the time thepassword
will be in the top 1% of the list of candidatesproduced
by our n-Viterbi algorithm.Therefore,in orderto crack
thepassword,Herbivoreonly needsto test1

<
50timesas

many passwordsasbrute-forcesearch,onaverage.

The 50 @ reductionin workfactorcomparedto exhaus-
tive searchcorrespondsto a total of 5

�
7 bits of infor-

mationlearnedperpassword usingthelatency informa-
tion. This is closeto the information gain analysisin
Sections3 and4, which predicteda gain of about1 bit
perkeystroke pair: recall that thepasswordsin this test
areof length8, so eachpassword contains7 keystroke
pairs. We attribute thedifferenceto minor variationbe-
tweenthedistributionsof inter-keystroketimingsin ran-
dompasswordsandthedistribution of timingsfor char-
acterpairstypedin isolation.

For easeof testing,our experimentswereon passwords
with a reducedsetof possiblecharacters.However, we
canexpecttheseresultsto carryover to passwordscho-
senfrom the full setof possiblecharacters.Assuming
that the informationgain availablefrom inter-keystroke
timing informationis about1 bit percharacterpair even



Training Test TestCases
Set Set Password 1 Password2 Password3 Password4 Password5
User1 User1 15

�
6% 0

�
7% 2

�
0% 1

�
3% 1

�
6%

User1 User2 62
�
3% 15

�
2% 7

�
0% 14

�
8% 0

�
3%

User1 User3 6
�
4% N/A 1

�
8% 3

�
1% 4

�
2%

User1 User4 1
�
9% 31

�
4% 1

�
1% 0

�
1% 28

�
8%

User2 User1 4
�
9% 1

�
3% 1

�
6% 12

�
3% 3

�
1%

User2 User2 30
�
8% 15

�
0% 2

�
8% 3

�
7% 2

�
9%

User2 User3 4
�
7% N/A 5

�
3% 6

�
7% 38

�
4%

User2 User4 0
�
7% 16

�
8% 3

�
9% 0

�
6% 5

�
4%

Table1: Successratesfor password inferencewith multiple users. The numbersarethe percentageof the search
spacetheattackerhasto searchbeforehefindstheright password.

when we extend to the whole keyboard,we expect to
seethis 50 timesreductionin workfactorfor passwords
of length7–8evenwhenthepasswordsarechosenran-
domly from all letterandnumberkeys. This50 @ reduc-
tion can make password crackingmore practical. For
example,for a password containingrandomly-selected
lower-caseletterkeys andnumberkeys, without timing
information,theattackerwouldneedto try 368 < 2 candi-
datepasswordsonaveragebeforehefindstheright one.
Benchmarksindicatethat a 840 MHz PentiumIII can
checkabout250� 000 candidatepasswords per second
in a off-line dictionaryattack. Thus,exhaustive search
would take about65 PC-daysto cracka password com-
posedof randomly-selectedlower-caseletter keys and
numberkeys. If the attacker usesthe timing informa-
tion, the computationcan be donein 1

�
3 days,which

makesthecrack50 @ morepractical.

5.4 Experimental Results for Password Infer -
encefor Multiple Users

Onepotentialweaknessin our simulationsis that real-
world attackersmightnotbeableto getasmuchtraining
datafrom thevictim for thestatisticalanalysisaswehad
available in our experiments.However, we arguenext
that this is unlikely to poseaneffective defenseagainst
timing attacks: thereareotherways that attackerscan
obtainthetrainingdatarequiredfor theattack.

Onesimpleobservationis thattheattackercaneasilyget
his own typing statistics,or thetyping statisticsof a co-
conspirator. Henceit is importantto evaluatehow well
the password inferencetechniquesperformwhenusing
one person’s typing statisticsto infer passwords typed
by anotherperson.

In this experiment,we collectedthe typing statisticsof
two users,User1 andUser2. An interestingresult is
that 75% of the characterpairstake aboutthe samela-
tency to typefor bothtwo users:in otherwords,thedif-

ferencebetweenthe averagelatenciesof the two users
for suchcharacterpairsis smallerthanonestandardde-
viation. Similarly, the simpletiming characteristicsre-
portedin Section3.2—e.g.,keypairs typed with alter-
natepairs tend to have much lower inter-keystroke la-
tency than keypairs typed with the samehand—were
observed to be essentiallyuser-independent.This sug-
geststhattypingstatisticshavealargecomponentthatis
commonacrossa broaduserpopulationandwhich thus
canbeexploitedby attackersevenin theabsenceof any
trainingdatafrom thevictim.

To testthishypothesisfurther, wehadfour users(includ-
ing User1 and2, from our previous experiments)type
thesamesetof five randomly-selectedpasswords.Pass-
words1 and2 have length8. Passwords3 and4 have
length7, andpassword 5 haslength6. Herbivore then
runs the n-Viterbi algorithm using the typing statistics
from User1 and2 to infer passwordstypedby the four
testusersseparately. Table1 shows thepercentageposi-
tion of therealpasswordsoccurredin theoutputcandi-
daterankinglist, whichis thepercentageof thepassword
spacetheattacker hasto searchbeforehefindstheright
password. User3 did not typePassword2 sotheentryis
notavailable.

Thisexperimentshows severalinterestingresults:

� Unsurprisingly, inferring a user’s password canin
generalbe donesomewhat moreeffectively if one
usestraining datafrom the sameuserratherthan
trainingdatafrom otherusers.

� The distancebetweenthe typing statisticsof two
userscanvary significantlyaccordingto how one
choosesthe pair of users.A userUa’s typing pat-
ternmightbemoresimilar to userUb’s thanto user
Uc’s. Thus it can give better resultsto useUb’s
training datathanUc’s training datato infer pass-
words typed by Ua. In this experiment,it shows



that in generalusingUser1’s trainingdatagivesa
betterresultto inferpasswordstypedby User3 than
usingUser2’s trainingdata.And User2’s training
datagivesabetterinferencefor passwordstypedby
User4 thanUser1’s trainingdata.

� Most importantly, thisexperimentshows thattrain-
ing datafrom oneusercanbesuccessfullyapplied
to infer passwordstypedby anotheruser. Hencethe
attackcanbeeffective evenwhentheattacker does
nothave typingstatisticsfrom thevictim.

5.5 Extensions

We expectthatHerbivorecouldalsobeusedto infer in-
formationabouttext or commandsthatuserstype. The
entropy of written English is very low (about0.6–1.3
bits percharacter[Sha50]) in comparisonto theamount
of informationleakedby inter-keystroke timings(about
1 bit of informationperkey pair; seeSection3). How-
ever, mountingsuchan attackwould appearto require
bettermodelsof written text [RN95]. In any case,we
havenotstudiedsuchascenarioin ourexperiments,and
we leave this for futurework.

6 RelatedWork

Timing analysishas previously beenusedby Kocher
to attack cryptosystems[Koc95]. Trostle exploited a
similar idea,showing how a malicioususeron a multi-
userworkstationcangain informationaboutotherusers’
passwordsusingCPU timings [Tro98]. We expectour
Hidden Markov Model techniquesmight find applica-
tionsin Trostle’s threatmodelaswell.

Most recently, other researchershave independently
pointed out the possibility of timing attackson SSH
[DS01]. Someof their observations reveal additional
weaknessesin SSH: For instance,they noted that the
SSH 1.x protocol reveals the exact length of pass-
words, becauseciphertexts containa length field sent
in the clear(SSH 2 doesnot have this problem);they
discussedhow to deal with the presenceof backspace
characters;and,they initiatedaninvestigationof theim-
pactof timing attacksonothersessiondata(suchasshell
commandstypedin theSSH session).

7 Countermeasures

AlthoughSSH providesanencryptedandauthenticated
link betweenthe local host and the remotemachine,
aneavesdroppercanstill learninformationabouttyped
keystrokesdueto two weaknessesof SSH. First, every

individual keystroke that a usertypesis sentto the re-
motemachinein anindividualIPpacket(exceptfor meta
keys suchas Shift and Ctrl); second,as soonas
commandoutputis availableon the remotemachine,it
is sentto the local host in one or multiple IP packets,
leakinginformationon theapproximatesizeof theout-
put. We have shown in this paperhow theseseemingly
minorweaknessesleadto severereal-world attacks.

Notethat in our traffic signatureattack,theattacker can
tell that the useris typing passwordsbecausethereare
no echopackets. Sooneway to fix this problemis that
whentheserverdetectsthattheechomodeis turnedoff,
theservercanreturndummypacketsthatwill beignored
by theclientwhenit receiveskeystrokepacketsfrom the
client. Thisfix canreducetheeffectivenessof thetraffic
signatureattackbut couldfail in otherattackssuchasour
nestedSSH attackwheretheattackercanguesswhenthe
user is typing his password by simply monitoring the
network connections.This fix doesnot prevent inter-
keystroke timing information,though.

To preventtheattacks,weneedto preventtheleakageof
thetiming informationof thekeystrokes.Onenaive ap-
proachmightbeto modify SSHsothatuponreceiving a
keystrokewith latency lessthanη millisecondsfrom the
previouskeystroke,theprogramwill delaythepacketby
a randomamountof up to η milliseconds.Becauseour
experimentindicatesthatthespectrumof thelatency be-
tweentwo keystrokesof continuoustyping is between
0–500milliseconds,we couldsetη � 500for example,
and sucha randomdelay would randomizethe timing
informationof thekeystrokes.Sucha randomdelayim-
posesanoverheadof about250millisecondsonaverage.
Unfortunately, if theattacker canmonitorthesameuser
login many timesandcomputetheaverageof thelaten-
ciesof thepasswordsequences,hecanreducetheeffec-
tivenessof the randomizednoise. For example,if the
attacker canget the timing informationof a user’s SSH
authenticationfor 50 times,thenoisecontributedby the
randomdelayis only about20–40milliseconds.Sowe
shouldnotusethismethod.

A betterway to prevent leakageof inter-keystroke tim-
ing information is to sendtraffic at a constantrate of
λ packets per secondwhen the link is active. Choos-
ing λ presentsa tradeoff betweenusability and over-
head:Increasingλ reducesthedummytraffic but cause
longer latency for the user. Assume,for example,that
we setλ � 50 milliseconds.Sincethe latency between
two keystrokes is usually greaterthan 50 milliseconds
and the network delay is alreadyat least in the tens
of milliseconds,this may be a reasonabletradeoff be-
tweencommunicationoverheadandadditionaldelay. In
sucha scenario,the SSH client would always senda



datapacket every 50 milliseconds. Assuming64 byte
packets(40 bytesfor IP andTCPheaders,and24 bytes
for SSH data), the communicationoverheadis 1280
bytes/second,which canevenfit in low-bandwidthcon-
nections,suchas modemconnections.If no real data
needsto be sent, the client will senddummy traffic
which the remotemachineignores.6 If the usertypes
multiple keys in a singletime period,thekeystrokesare
bufferedandsenttogetherin thenext scheduledpacket.
While thismethodpreventstheeavesdropperfrom learn-
ing timing information about keystrokes typed at the
client side,it doesnotpreventinformationleakagefrom
the sizeof responsepackets from the remotemachine.
Hencetheserver sidewould alsoneedto sendresponse
traffic ataconstantpacket ratesimilar to theclient side.

8 Conclusion

In this paper, we identifiedseveralserioussecurityrisks
in SSH dueto two weaknessesof SSH: First, the trans-
mittedpacketsarepaddedonly to aneight-bytebound-
ary (if a block cipher is in use),which revealsthe ap-
proximatesizeof the original data. Second,in interac-
tive mode,every individual keystroke that a usertypes
is sent to the remotemachinein a separateIP packet
immediatelyafter the key is pressed(except for some
metakeyssuchShift or Ctrl), which leakstheinter-
keystroketimingsof users’typing. Weshowedthatthese
two weaknessesreveala surprisingamountof informa-
tion on passwords and other text typed over SSH ses-
sions(about1 bit of information per characterpair in
thecaseof randomlychosenpasswords). This suggests
thatSSH is notassecureascommonlybelieved.

Thelessonswelearnedandthetechniqueswedeveloped
in this paperapply to a generalclassof protocolsthat
aim to provide securechannelsbetweenmachines.We
show that timing informationopensa new setof risks,
andwe recommendthat developerstake carewhende-
signingthesetypesof protocols.
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A The n-Viterbi Algorithm

The Viterbi algorithmis widely usedin solving HMM
problems.Givenanobservation B y1 C.D.D.DEC yT F of aHMM,
the Viterbi algorithm inductively computesthe most
likely sequenceB q1 C q2 C.D�D.DGC qt F thatgeneratedtheobser-
vation for eacht H 1C 2C.D�D.D.C T. Let SB qt F be the most
likely sequenceat time t that endswith stateqt , with

correspondingposteriorprobabilityV B qt F . The Viterbi
algorithmstartswith

SB q1 F H q1 and V B q1 F H PrI q1 J y1KLC
andcomputes

V B qt F H max
qt M 1

PrI yt J qt K PrI qt J qt N 1K V B qt N 1 F
Thenwe let qt N 1 be thestatethatmaximizestheabove
expressionanddefineSB qt F to be SB qt N 1 F J qt . The final
resultof theViterbi algorithmreturnsthemostlikely se-
quenceof agivensequenceof observations.

We extend the Viterbi algorithm to the n-Viterbi algo-
rithm, which returnsthe n most likely sequencesgiven
a sequenceof observations.Figure12 shows a diagram
of then-Viterbi algorithm.At eachtimeslicet, weasso-
ciatea list with eachpossiblestatenodethatkeepstrack
of the n most likely sequencesthat lead to the stateat
thattimeslice.

Let Sn B qt F denotethesetof then mostlikely sequences
endingwith stateqt at time t, with correspondingpos-
terior probabilitiesVn B qt F . At time t H 1, we initialize
the n-Viterbi algorithmin the sameway as the Viterbi
algorithm,

Sn B q1 F HPO q1 Q and Vn B q1 F H PrI q1 J y1KLD
For time t, we let

Vn B qt F H nmax O PrI yt J qt K PrI qt J qt N 1K v
: qt N 1 R QC v R Vn B qt N 1 F Q

wherenmaxdenotesthesetof then largestvalues.We
let Sn B qt F bethesetn highest-probabilitysequencescor-
respondingto thechoiceof Vn B qt F above.

Except for the first and the secondstep,at eachtime
slice, for eachpossiblestate,we needto go through
n S JQJ possibilitiesand computethe n most likely se-
quencesthat leadto that stateat that time slice. Hence
thecomplexity of n-Viterbi algorithmis O B nJQJ 2T F .
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Figure12: A pictorial representationof then-Viterbi Algorithm. Eachverticalslicerepresentsa time step,andeach
noderepresentsa possiblestateat a particulartime slice. Thelist associatedwith eachnodestoresthen mostlikely
sequencesendingwith thatstateup to thattimeslice.


