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Abstract

We implemented an attack against WEP, the link-layer security protocol
for 802.11 networks. The attack was described in a recent paper by Fluhrer,
Mantin, and Shamir. With our implementation, and permission of the net-
work administrator, we were able to recover the 128 bit secret key used in a
production network, with a passive attack. The WEP standard uses RC4 IVs
improperly, and the attack exploits this design failure. This paper describes
the attack, how we implemented it, and some optimizations to make the at-
tack more efficient. We conclude that 802.11 WEP is totally insecure, and
we provide some recommendations.

1 Introduction

Wireless networking has taken off, due in large part to the availability of the 802.11
standard. While another standard, Bluetooth, is also gaining in popularity, the
longer range and higher speeds achieved by 802.11 make it the protocol of choice
for wireless LANs. Office buildings, conferences, and even many residences now
offer 802.11 connectivity. The PC cards that are most often used in these networks
provide a security protocol called Wired Equivalent Privacy (WEP).

WEP is easy to administer. The device using the 802.11 card is configured
with a key, that in practice usually consists of a password or a key derived from a
password. The same key is deployed on all devices, including the access points.
The idea is to protect the wireless communication from devices that do not know
the key.

∗Research done while a summer intern at AT&T Labs
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Borisov, Goldberg and Wagner demonstrated some security flaws in WEP [1].
They explained that WEP fails to specify how IVs for RC4 are specified. Several
PC cards reset IVs to zero every time they are initialized, and then increment them
by one for every use. This results in high likelihood that keystreams will be reused,
leading to simple cryptanalytic attacks against the cipher, and decryption of mes-
sage traffic. The authors verified this experimentally and describe other weaknesses
as well. For example, the space from which IVs are chosen is too small, virtually
guaranteeing reuse, and leading to the same cryptanalytic attacks just described.
The paper also shows that message authentication in WEP is broken.

Fluhrer, Mantin, and Shamir describe a passive ciphertext-only attack against
RC4 as used in WEP [4]. The attack exploits the method in which the standard
describes using IVs for the RC4 stream cipher. In their paper, the authors state,
Note that we have not attempted to attack an actual WEP connection, and hence
do not claim that WEP is actually vulnerable to this attack.Based on the descrip-
tion in their paper, we successfully implemented the attack, proving that WEP is
in fact completely vulnerable. The purpose of this paper is to describe our im-
plementation, along with some enhancements to improve the performance of the
attack.

2 Overview of the WEP attack

In this section we present an overview of the WEP protocol and review briefly how
the attack of Fluhrer, Mantin, and Shamir can be applied to WEP. For a detailed
description of WEP we refer the reader to the official 802.11 standard [7].

Encryption in WEP uses a secret key,k, shared between an access point and
a mobile node. To compute a WEP frame, the plaintext frame data,M, is first
concatenated with its (non-cryptographic) checksumc(M), to produceM · c(M)
(where· denotes concatenation). Then, a per packet initialization vector (IV) is
prepended to the secret key,k, to create the packet key,IV · k. The RC4 stream
cipher is then initialized using this packet key, and the output bytes of the cipher
are exclusive-ored (denoted⊕) with the checksummed plaintext to generate the
ciphertext:

C = (M ·c(M))⊕RC4(IV ·k)

The actual WEP data is the per-packet IV prepended to this ciphertext,C.

2.1 The Known IV Attack of Fluhrer, Mantin, and Shamir

For completeness, we include a short description of the attack of Fluhrer, Mantin,
and Shamir [4] here. We refer the reader to the original paper for the motivation
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and details.
To begin, we describe the structure of the RC4 stream cipher (a full description

can be found in [9]). RC4 consists of two parts, a key scheduling algorithm and an
output generator. In WEP, the key scheduling algorithm uses either a 64-bit packet
key (40-bit secret key plus 24-bit IV) or a 128-bit key (104-bit secret key plus 24-
bit IV) to set up the RC4 state array,S, which is a permutation of{0, . . . ,255}. The
output generator uses the state arrayS to create a pseudorandom sequence.

The attack utilizes only the first word of output from the pseudorandom se-
quence, so we focus our attention there. The equation for this first byte of output
is given byS[S[1]+S[S[1]]. Thus, after the key setup stage, this first byte depends
on only three values of the state array (S[1], S[S[1]], S[S[1]+S[S[1]]). The attack is
based on our ability to derive information about the key by observing this value.
We defer the discussion of how to recover the value of this first byte from a WEP
ciphertext stream until Section 3.

To mount the attack, we search for IVs that place the key setup algorithm into
a state which leaks information about the key. Using the terminology of Fluhrer
et al., we refer to these key-leaking cases asresolved. It is simple to test whether
a particular packet provides an IV and output byte that result in a resolved con-
dition, though we refer the reader to the Fluhreret. al. paper for the conditions
under which they occur1. Each resolved packet leaks information about only one
key byte, and we must correctly guess each key byte before any packet gives us
information about a later key byte.

We say we must “guess” each key byte as the attack is statistical in nature;
each resolved packet gives us a 5% chance of guessing a correct key byte and a
95% chance of guessing incorrectly. However, by looking at a large number of
these resolved cases, we can expect to see a bias toward the true key bytes.

3 Implementation

In implementing this attack, we had three goals. First and foremost, we wanted
to verify that the attack could work in the real world. Second, we were interested
in how cheaply and easily the attack could be launched. Lastly, we wanted to see
what improvements could be made to both the general RC4 attack and the WEP
attack in particular. In this section we report on our success at the first two goals,
while reserving discussion about attack optimizations to Section 4.

1It is important to use the criteria given in section 7 rather than the criteria given in appendix A.
The IVs listed in appendix A are only a subset of the IVs which can resolve. We return to this in
section 4 of this paper.
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3.1 Simulating the Attack

Before trying to break WEP, we created a simulation of the RC4 attack to both
verify our understanding of the weakness and to gather information about how
many resolved packets we could expect would be required when mounting the ac-
tual attack. The coding of the simulated attack took under two hours, including
a few optimizations. The simulation showed that the attack was always able to
recover the full key when given 256 probable resolved cases.2 We also observed
that although 60 resolved cases (the number recommended in the Fluhreret. al.
paper) were usually enough to determine a key byte, there were instances in which
more were required. Because at this point we had not thoroughly investigated how
accurately we would be able to determine the first output byte of the RC4 pseu-
dorandom sequence, we also simulated the effect that sometimes guessing wrong
would have on the attack. We were pleased to see that as long as the number of
incorrect guess was kept small, the correct key byte would still be returned, though
sometimes more resolved cases were needed.

3.2 Capturing the Packets

Surprisingly, capturing WEP encrypted packets off of our wireless network proved
to be the most time consuming part of the attack. There are a number of commer-
cial software programs that are able to both capture and decode 802.11 packets,
such as NAI’s “Sniffer” and Wildpacket’s “AiroPeek,” though both products cost
thousands of dollars. Because we wanted to show that the attack could be done by
an adversary with limited resources, we purchased a $100 Linksys wireless card,
based on the Intersil Prism II chipset. We made this choice because the Prism II
allows much of its computation to be completed in software and because there was
a Linux driver available that could grab raw WEP encrypted packets. Though we
did not know it at the time, this chipset has been used by others to mount dictionary
and brute force attacks against WEP.3

We used both thelinux-wlan-ng prism2 driver4 and a modified ver-
sion of Tim Newsham’s patch to re-enable raw packet monitoring,5 to get the card
working in Linux. We were then able to use a modified version of the packet snif-
fer ethereal 6 to capture raw WEP encrypted packets and to decode the data
necessary for our attack tool.

2Cases corresponding to IVs of the form (B+3, 255, N) as in the Fluhreret. al. paper.
3See Blackhat ‘01 presentation athttp://www.lava.net/˜newsham/wlan/WEP_

password_cracker.ppt
4Available fromhttp://www.linux-wlan.com/
5Available fromhttp://www.lava.net/˜newsham/wlan/
6Available fromhttp://www.ethereal.com/
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There is one problem with using this card as opposed to a more sophisticated
solution. The prism2 chipset does request a transmission time-slot even when in
monitor mode. Many inexpensive basestations do not report this, though a software
hack can allow Linux computers running as access points to register an SNMP trap
each time that a node joins or leaves the network [5]. This information does not di-
rectly indicate likely attackers, but could be combined with other information in an
IDS to locate users who register with a basestaion but not with whatever network
level access controls exist. Also, we know of no practical reason why this “registra-
tion” with the network is necessary; there may even exist consumer 802.11 chipsets
which support listening without registering (perhaps even the prism2 chipset in
some other undocumented mode).

Even with the hardware and software problems, from the time that we first
decided to look at this problem, it took less than a week for the the card to be
ordered and shipped, the test-bed to be set up, the problems to be debugged, and a
full key to be recovered.

3.3 Mounting the Attack

The last piece in actually mounting the attack was determining the true value of
the first plaintext byte of each packet, so that we could could infer the first byte of
the pseudorandom sequence from the first ciphertext byte. We originally looked
at tcpdump output of decrypted traffic (using a correctly keyed card7), and were
planning on using packet length to differentiate between ARP and IP traffic (both
of which have well known first bytes in their headers) as these were by far the two
most common types of traffic on our network. After implementing this, however,
we discovered that the attack didn’t seem to work. We then tried hand decrypting
packets to determine whethertcpdump was working correctly and discovered that
an additional 802.2 encapsulation header is added for both ARP and IP traffic.8

This discovery actually made the attack even easier, as all IP and ARP packets
would now have the same first plaintext byte (0xAA, the SNAP designation).9 If
the network in question also carries legacy IPX traffic, the first plaintext byte will
not be 0xAA for these packets. However, as we showed in our simulation, as long
as the IP and ARP packets greatly outnumber the IPX packets, the attack is still
possible. If the network carries mostly IPX traffic, the attack should be modified
to use either 0xFF or 0xE0 instead of 0xAA.

Although our actual attack used the improvements discussed in the next sec-
tion, we present an outline of how a naive attack could work here. It is interesting

7Note that a correctly keyed card is not needed; we simply used one to design the attack.
8We eventually traced this back to RFC 1042 [8].
9Some vendors, such as Cisco use a proprietary OID [2]. Fortunately, it also beings with 0xAA.
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RecoverWEPKey()
Key[0. . .KeySize] = 0
for KeyByte= 0. . .KeySize

Counts[0. . .255] = 0
foreach packet→ P

if P.IV ∈ {(KeyByte+3,0xFF,N) | N ∈ 0x00. . .0xFF}
Counts[SimulateResolved(P,Key)]+ = 1

Key[KeyByte] = IndexOfMaximumElement(Counts)
returnKey

Figure 1:The basic attack on WEP. Depending on the actual key used, this attack can take between
4,000,000 and 6,000,000 packets to recover a 128-bit key. TheSimulateResolved function
computes the value described in section 7.1 of Fluhreret al.

to note that even this baseline version of the attack would still be successful in a
short period of time (a day or two at most) and with an even smaller amount of
computation when compared to the improved implementation, assuming that the
wireless network in question had a reasonable amount of traffic.

To begin, we collected a large number of packets from our wireless network.
To speed the process up for some of our experiments late at night when network
volume was low, we artificially increased the load on the wireless network by ping
flooding a wireless node. (We could have waited until more traffic was created; this
is not an active attack.) Because we are able to predict the value of the first byte
of any plaintext, the fact that we changed the makeup of the network traffic did
not affect these experiments. In looking at the IVs of these collected packets, we
discovered that the wireless cards use a simple counter to compute the IV, wherein
the first byte is incremented first.10

Figure 1 shows the basic attack used to recover a WEP key. In section A.1 of
Fluhreret. al., the authors postulate that 4,000,000 packets would be sufficient with
this baseline attack; we found the number to be between 5,000,000 and 6,000,000
for our key. This number is still not unreasonable, as we were able to collect that
many packets in a few hours on a partially loaded network.

4 Improving the attack

In this section we discuss several modifications that can be made to improve the
performance of the key recovery attack on WEP. While not necessary for the com-

10Other cards have been reported to choose IVs at random, to count in big endian order, or to
switch between two IVs. This last class are cards are not vulnerable to the attack in this paper,
although they break badly under the attacks of Borisovet al. [1].
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promise to be effective, they can decrease both time and space requirements for an
attacker.

4.1 Choosing IVs

In the baseline attack (the one described in Appendix A of Fluhreret. al.), only IVs
of a particular form are considered (those corresponding to(KeyByte+3,0xFF,N)
whereKeyByteis the current KeyByte we are guessing andN is unrestricted).
However, we found that there are other IVs that can result in a resolved state, and
that testing all IVs instead of only the subset suggested by the Fluhreret. al. paper
can be done in parallel with receiving packets. This conclusion was verified by Adi
Shamir [10], who also noted that these packets appear more often for higher key
bytes.

4.2 Guessing Early Key Bytes

As the Fluhrer, Mantin, and Shamir attack works by building on previously discov-
ered key bytes, recovering early key bytes is critical. There are two approaches that
we tried both separately and together. The first utilized the way that the IVs were
generated, namely that we would receive packets that resolved for lots of differ-
ent key bytes before necessarily receiving enough resolving packets to predict the
early key bytes.11 We would therefore use the resolving cases that we had received
to narrow down the possibilities for the early key bytes. We were then able to test
candidate keys by determining if the WEP checksum on a decrypted packet turned
out correctly.

The second approach exploited the poor key management available in WEP
implementations. Since WEP keys have to be entered manually, we assumed that
instead of giving clients a long string of hex digits, a user memorable passphrase
would be used. After examining the test wireless cards at our disposal, we deter-
mined that the user-memorable passphrase is simply used raw as the key (i.e. the
ASCII is used; no hashing is done). Although hashing does not protect against a
dictionary attack, it would have helped in this circumstance, as we were able to
determine directly whether each key byte was likely to be part of a user memorable
passphrase by checking whether the byte value corresponded to an ASCII letter,
number, or punctuation symbol.

This pair of optimizations turned out to provide an astounding decrease in the
number of packets required. In parallel with receiving packets (on another ma-
chine, though this is not really necessary), we were continually attempting to guess
the key by choosing the most likely candidates based on the resolved cases we had

11See Figure 6 of Fluhreret. al.; resolved cases are much more likely to occur for later key bytes.

7



RecoverWEPKeyImproved(CurrentKeyGuess, KeyByte)
Counts[0. . .255] = 0
foreach packet→ P

if Resolved?(P.IV )
Counts[SimulateResolved(P,CurrentKeyGuess)]+ = Weight(P,CurrentKeyGuess)

foreach SelectMaximalIndexesWithBias(Counts)→ ByteGuess
CurrentKeyGuess[KeyByte] = ByteGuess
if Equal?(KeyByte,KeyLength)

if CheckChecksums(CurrentKeyGuess)
returnCurrentKeyGuess

else
Key= RecoverWEPKeyImproved(CurrentKeyGuess,KeyByte+1)
if notEqual?(Key,Failure )

returnKey
returnFailure

Figure 2: The improved attack on WEP. Depending on the actual key used, this attack can take
between 1,000,000 and 2,000,000 packets to recover a 128-bit key. TheSimulateResolved
function computes the value described in section 7.1 of Fluhreret al., the CheckChecksums
checks to see if a key causes the checksums in the WEP packets to come out correctly, and the
Resolved? predicate checks to see if a given packet results in a resolved condition. TheSe-
lectMaximalIndicesWithBias function corresponds to the optimization in section 4.2. The
Weight function returns 3 if the resolved case corresponds to a special resolved case as described
in section 4.3, and 1 otherwise.

already gathered. In the event of ”ties” for the next most likely byte, we gave prior-
ity first to (in order): lowercase letters, uppercase letters, numbers, symbols, other
byte values.

4.3 Special Resolved Cases

As Shamir pointed out to us, there are cases when a resolved case can provide an
even better indication as to a particular key byte. If there is a duplication among
the three values at positionsS[1], S[S[1]], andS[S[1] + S[S[1]] (i.e. these are only
two distinct values), then the probability that these positions in theSpermutation
remain unchanged jumps frome−3 ≈ 5% toe−2 ≈ 13%. We can thus treat the evi-
dence from these cases as about three times more convincing as a standard resolved
case.

4.4 Combining the Optimizations

Figure 2 shows the key recovery algorithm after all of the improvements described
above. The improvements drop the number of packets required from around 5,000,000
to around 1,000,000.

8



5 Discussion

There are many variables that can affect the performance of the key recovery attack
on WEP. In this section we summarize the effect of some of these variables and look
at how the WEP design could be slightly altered to prevent this particular attack.

5.1 IV Selection

Since the WEP standard does not specify how IVs should be chosen, there are
a variety of IV generation in use in current 802.11 cards. The majority of cards
seem to use one of three methods: counters, random selection, or value-flipping
(i.e. switching between two IV values). This attack is possible with either of the
first two types of IV selection. Value-flipping prevents this attack at the expense
of reusing the pseudorandom stream every other packet. This is not a reasonable
trade-off.

Counter modes are the most accommodating of this attack. In these cards, the
IV is incremented with each packet sent (starting either at 0 or at some random
value when the card is powered on). With counter mode cards, an attacker is prac-
tically guaranteed a nice distribution of resolving packets among the key bytes.
Random selection of each IV is not much better, as there are enough expected re-
solved cases that although the distribution might not be quite as good as the counter
modes, it won’t be much worse.

In short, there does not seem to be a way of choosing IVs to mitigate the effects
of this attack without explicitly testing each IV and key pari to see if it resolves
before sending it. This would require extra processing power and would decrease
the already small space of IVs.

5.2 Key Selection

The lack of key management in WEP certainly contributes to the ease of the key
recovery attack. Most networks use a single shared key between the basestation
and all mobile nodes. Besides the suite of ”disgruntled ex-employee who knows
the key” style attacks, there is also the problem of distributing this key to the users.
Many sites use a human memorable password to easy this key distribution. There is
however no standard way of mapping these passwords to a WEP key. The current
solution is mapping the ASCII value directly to a key byte. We would recommend
switching to either using a secure (non-memorable) WEP key or having the key
setup software hash the password to the key using a cryptographic hash function.
Note that neither of these solutions prevent the attack, only make it slightly more
difficult.
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There do exist proprietary solutions that allow each mobile node to use a dis-
tinct WEP key, most notably Cisco’s LEAP protocol. LEAP sets up a per-user, per-
session WEP key when a user first authenticates to the network. This complicates
the attack, but does not prevent it so long as a user’s ”session” lasts sufficiently
long. We would recommend securely rekeying each user after every approximately
10,000 packets.

5.3 RC4

RC4 is an efficient stream cipher that can be used securely. The implementation
of RC4 in SSL is not affected by the Fluhreret. al. attack. The reasons are that
SSL pre-processes the encryption key and IV by hashing with both MD5 and SHA-
1 [3]. Thus different sessions have unrelated keys. In addition, in SSL, RC4 state
from previous packets is used in future packets, so that the algorithm does not rekey
after each packet.

A further recommendation (RSA Security Inc.’s standard recommendation) is
for applications to discard the first 256 bytes of RC4 output. This may be a bit
expensive for very small packets, but if session state is maintained across packets,
that cost is amortized.

In summary, RC4 can be used as part of a security solution. However, care
must be taken when implementing it so that key material is not leaked. One of
the risks of algorithms that have such caveats is that protocol designers without a
strong grounding in cryptography and security may not be aware of the correct way
to implement them, and this is exactly what happened in the case of WEP.

6 Conclusions and recommendations

We implemented the attack described by Fluhreret. al. in several hours. It then
took a few days to figure out which tools to use and what equipment to buy to
successfully read keys off of 802.11 wireless networks. Our attack used off of the
shelf hardware and software, and the only piece we provided was the implemen-
tation of the RC4 attack, along with some optimizations. We believe that we have
demonstrated the ultimate break of WEP, which is the recovery of the secret key
by observation of traffic.

Since our technical report appeared, others have duplicated our results. Al-
though we did not release our code, there are now two publicly available tools for
breaking WEP keys. As always, once security attacks become known, exploits are
available toscript kiddies, who do not need to understand the technical details to
break systems. The two tools that we know of areAirsnort andWEPCrack.
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Given this attack, we believe that 802.11 networks should be viewed as inse-
cure. We recommend the following for people using such wireless networks.

• Assume that the link layer offers no security.

• Use higher-level security mechanisms such as IPsec [6] and SSH [11] for
security, instead of relying on WEP.

• Treat all systems that are connected via 802.11 as external. Place all access
points outside the firewall.

• Assume that anyone within physical range can communicate on the network
as a valid user. Keep in mind that an adversary may utilize a sophisticated
antenna with much longer range than found on a typical 802.11 PC card.

The experience with WEP shows that it is difficult to get security right. Flaws
at every level, including protocol design, implementation, and deployment, can
render a system completely vulnerable. Once a flawed system is popular enough to
become a target, it is usually a short time before the system is defeated in the field.
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