
© Intranode Software Technologies – 2002 1

New Tool And Technique For Remote
Operating System Fingerprinting

– Full Paper –

Franck Veysset, Olivier Courtay, Olivier Heen, Intranode Research Team

April 2002, v1.1

Abstract – Information gathering is an essential part of
acute vulnerability assessment, especially when the
whole process is automated. In this context, host
Operating System detection must be precise, even
when networks are well defended. We present an
original Operating System detection method, based on
temporal response analysis. As a proof of concept, we
release the open source tool called RING – for Remote
Identification Next Generation – and suggest
improvements in the paper. We also stress the
interesting synergy of using RING together with state-
of-the-art tools, such as NMAP [1] or X-Probe [2], for
a better overall accuracy in automated vulnerability
assessment.

Index terms – Remote Operating System Detection, OS
Fingerprinting, Automated Vulnerability Assessment,
Internet Security.

1 Introduction

In recent years, the need for automated Internet
vulnerability assessment software has been
understood and has resulted in the very fast growth
of widely available solutions.

As an essential part of the assessment process,
remote Operating Systems detection, a.k.a. OS
Fingerprinting, must meet several requirements:

− Accuracy: no falsely detected OS.

− Firewall and IDS neutrality: not be disturbed
by / do not disturb existing firewalls and IDS.

− Politeness: low network traffic and no
dangerous segments.

− Handiness: easily extensible signature database
and automation functions.

− Speed: depending on the usage, a fast
fingerprinting tool might allow large network
scans.

We introduce a new OS Fingerprinting method,
with such good properties and fairly acute results in
practical cases where other tools may fail.

We developed open source software called RING
for both proof of concept and test purpose.
Moreover, we strongly believe that complete access
to source code will encourage and speed-up
collaborative improvements. RING relies on a
signature database that may be enhance, thanks to
the built-in learning mode.

© Intranode Software Technologies – 2002 2

2 State-Of-The-Art

2.1 A brief history of OS Detection

Security Assessors already have a choice of
detection techniques and tools, each of which may
be suitable for some application context.

− Banner grabbing allows OS deduction from
services banner and is appreciated by most
human assessors. This can be completed by
binary file collect and analysis.

− TCP segments (standard or not) response
analysis relies on different Operating System
responses to specifically prepared segments,
particularly when response behavior is not
clearly specified in RFCs [3,4]. Furthermore,
vendors have introduced fine tuning and
proprietary extensions into their TCP/IP stack,
which will clearly identify those systems in case
of such solicitations. Popular tools such as
Savage’s QueSO [5] and Fyodor’s NMAP1 [1]
use many variants of this technique.

− ICMP response analysis is recent. By sending
UDP or ICMP solicitation and analyzing various
ICMP replies, a tool such as Ofir Arkin’s X-
Probe [2] will give precise indication except if
needed protocols are blocked at firewall level.

− Initial Sequence Number (ISN) analysis
exploits differences in TCP stacks random
generators, identified through a sufficient
number of tests [6].

− Operating System Specific deny of service are
recalled here for the sake of exhaustively, but
are only used by hackers. Except for very
precise situation, the overall accuracy of this
method is rather bad.

− 1 NMAP has become a de facto standard tool, now
implementing many techniques, including ISN
sampling, ICMP response analysis, UDP probes
replies tests...

For a most comprehensive description of various
techniques, see also [7] and Annex 1 – Main
Fingerprinting Techniques Comparison.

Figure 1: Synoptic of OS fingerprinting
technologies

2.2 Detailing stack querying techniques

Stack querying techniques allow remote Operating
System detection by measuring TCP/IP responses to
various solicitations. Most Operating System will
answer in a specific manner to specially crafted
TCP/IP requests.

Tools such as NMAP or QueSO are based on such
techniques. They generate a group of TCP and UDP
requests that they send to either opened or closed
ports. Then the remote system responses – that can
be usual or unusual – are analyzed, providing useful
information for eventually deducing the identity of a
precise Operating System.

Those techniques generally allow security assessors
to get information such as type and version about
the target system in a fairly short delay.

Several factors explain the accuracy of the stack
querying method:

− Each Operating System or even patch version
usually may use its own implementation of the
IP stack.

© Intranode Software Technologies – 2002 3

− TCP/IP specifications are not entirely respected
and each different implementation has its own
characteristics that can potentially reveal the
Operating System.

− Specifications can be interpreted and some
features are optional, some constructors
implement those features some don’t.

− Some proprietary IP improvements are
sometimes implemented and are characteristic
of an Operating System.

2.3 Common limitations of classical tools

NMAP can identify over 500 different Operating
Systems, but to do so tests have to be performed in
good conditions i.e. on an opened TCP port, a
closed one and an closed UDP port. If those
requirements are not met the accuracy of the
detection will decrease.

With new security policy being used on Internet
connected systems, many machines just have one
opened TCP port viewable from Internet, every
other port being filtered by adequate firewalls or
packet filters.

In such a basically secured environment, NMAP,
and Xprobe tools, based on ICMP, closed UDP
ports, and TCP close ports won’t work properly.

3 Needed TCP/IP Material

To make a self-contained paper, we recall some of
the most important TCP/IP characteristics.

TCP is a networking protocol whose definition can
be found in RFC 793 [3]. ISO norm defines TCP as
a data transmission protocol situated over IP.
TCP/IP is the main protocol used within the Internet
world [9].

Its reliability is the key of its success: Error
detection and management, flow and congestion
control, duplication control, packet reordering.

To meet this requirements, TCP is connection-
oriented. The general scheme is as follows:

1. Connection establishment.

2. Data transfer.

3. Connection Termination.

TCP relies on IP for packet routing over Internet.
As network congestion or routing problems can
occur, IP can’t be trusted for end-to-end packet
transmission. Furthermore, IP is a fully
connectionless protocol. Thus, connection control
has to be performed at the TCP level.

TCP headers contain several fields to manage those
features, as show in the table hereafter.

Source Port Destination Port

Sequence Number

Acknowledgement Number

Hlen 0 U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window

Size

Checksum Urgent Pointer

TCP Options

Figure 2: Simplified TCP header

The “Sequence Number” and “Acknowledgement
Number” fields are used to manage reordering and
control particular errors. The URG, ACK, PSH,
RST, SYN and FIN fields are used to manage the
connection state. RFC 793 defines a state transition
diagram for a TCP connection (see Figure 3:
Simplified TCP State diagram).

Figure 3: Simplified TCP State diagram

© Intranode Software Technologies – 2002 4

For a better understanding of further explained
RING algorithm, it is important to recall the TCP/IP
three-way handshake, i.e. the connection
establishment method between a client (A) and a
server (B).

Figure 4: Three-Way Handshake diagram

As some packets might get lost during an IP
transmission, "every" packet has to be
acknowledged by the receiver. Note that TCP
maintains a list of acknowledged packets.

If a packet has not been acknowledged quickly
enough to the server, it considers this packet as
being lost and resends it.

Moreover, TCP reorders the incoming packets if
necessary, so that data is passed in correct sequence
to the upper layer.

Network congestion could cause packets to get lost.
Any network has a maximum packet per second
capacity due to either physical or router
performance.

If network congestion occurs, there might be some
packet losses. As TCP retransmits lost packets, the
congestion problem gets worse and worse.
Consequently, if congestion occurs, packet
retransmission should be delayed. In other words,
the transmission delay in between 2 packets has to
increase [9].

This mechanism is specified by TCP, but RFC 793
does not impose any algorithm to compute the
acknowledgement delays, it just suggests one.

About the retransmission algorithm (RFC 2988)

TCP is very sensitive to the RTO timer duration:
− Too short: useless retransmission
− Too long: the retransmission comes too late

The protocol has to be efficient for any transmission
condition:
− LAN or WAN, heavy or light load
− The timer duration has to be computed

according to the Round Trip Time.

RTT evaluation:
− RTT=(α *old_RTT)+((1-α)*measured_RTT),

α ∈[0-1]
− The length of a round trip in between a segment

transmission and its acknowledgement.

Segment retransmission and merging make this
assessment difficult.

Karn algorithm
While a packet is being retransmitted

RTO = d*old_RTO, d=2

The first implementations proposed

RTO = d*RTT, d=2

The most recent implementations use a variance-
based computation

E=((1-j)*old_E) + j*|old_RTT - measuredRTT|)

RTO =RTT + h * E, h=4, j=1/4

© Intranode Software Technologies – 2002 5

4 Temporal analysis

4.1 Principle description

Packet retransmission offers a pattern that can be
analyzed from a remote host.

Such patterns are defined in the norm (RFC 793)
but it leaves plenty of scope. Moreover, some of the
implementations don’t scrupulously respect the
norm.

To have a chance of observing these patterns, one
must force the target IP stack in a non-standard
situation, where timeouts values will be reached.

This can be done by simulating network congestion,
simply avoiding to acknowledge the SYN-ACK
packets the target emits.

By measuring the delay between packet
retransmission, or by looking at some other kind of
information such as TCP flags, sequence number or
acknowledge number, it is possible to get revealing
information about the target behavior.

If every Operating System has its own behavior, it
is possible to establish a typical system signature.
Whatever the tested machine or the testing
conditions, the Operating System is the only
element leading the tested machine behavior.
Therefore a given test realized on different
machines, using the same Operating System, will
produce the same result (provide that networks
conditions doesn’t vary too much).

Comparing the target Operating System fingerprint
and the Operating System typical fingerprint, it
becomes possible to find out which Operating
System is running on the target machine.

New Operating System signature can be easily
recorded, then associated to the Operating System
name.

Whenever this pattern is observed again it will be
easy to recall the learned signature and associated
name, which identifies the Operating System.

4.2 Doing it yourself

The Operating System fingerprinting method uses
two components of the detector: a packet filter
function – such as provided by personal firewalls –
together with a packet listening function.

Detector configuration: a simple method to
simulate network congestion is to set up a personal
firewall on the scanner machine and to create some
filtering rules forbidding any incoming traffic from
the target machine.

Then a listening mechanism has to be set up for all
the packets emitted from the target machine. So the
scanner machine TCP/IP stack does not send any
SYN/ACK or RST packet that would inform the
target machine its packet is received, and thus
disable the expected behavior.

Therefore the same machine has to be used as an IP
sender, a packet filter and a packet listener.

Test progress: This test progress is composed of
three different steps.

− Firewall set up.

− Standard connection attempt on the audited
machine.

− Target machine emitted packets monitoring.

Here are the rules to apply to notice retransmission
effects: for every following steps the commands are
given for Linux 2.4. Note that a packet sniffing tool,
such as TCPDump [10], and a command line
segment-forging tool, such as SendIP [11] are
required.

− Choose a host with a known open port. Let’s
assume than machine 192.168.1.10 has TCP
port 80 open (for example, this system is a web
server)

− Configure your firewall to block every
incoming packets from the target machine.
#> iptables –A INPUT –source
192.168.1.10 –p TCP –sport 80 –
dport 62302 –j DROP.

− Listen to every packets coming from the target
and from the open port on the machine.
Command line is:

© Intranode Software Technologies – 2002 6

#> tcpdump –n host 192.168.1.10
and port 80 and port 62302.

− Send a TCP SYN packet to attempt a
connection establishment. Command line (on a
different shell) is:
#> sendip 192.168.1.10 –p TCP –is
your_ip_address –ts 62302 –td 80.

− Analyse the delay between every try from the
target machine. See Figure 5 for a general
scheme of segments transmission. Extensive
tcpdump results are indicated below.

14:13:12.480412 192.168.1.2.62302 >
192.168.1.10.80: S 221002:221002(0) win 1024
[tos 0x10]

14:13:12.480871 192.168.1.10.80 >
192.168.1.2.62302: S
3566819867:3566819867(0) ack 221003 win 5840
<mss 1460> (DF)

14:13:16.876294 192.168.1.10.80 >
192.168.1.2.62302: S
3566819867:3566819867(0) ack 221003 win 5840
<mss 1460> (DF)

14:13:22.876230 192.168.1.10.80 >
192.168.1.2.62302: S
3566819867:3566819867(0) ack 221003 win 5840
<mss 1460> (DF)

14:13:34.876110 192.168.1.10.80 >
192.168.1.2.62302: S
3566819867:3566819867(0) ack 221003 win 5840
<mss 1460> (DF)

14:13:59.075843 192.168.1.10.80 >
192.168.1.2.62302: S
3566819867:3566819867(0) ack 221003 win 5840
<mss 1460> (DF)1

In fact the measure is not based on the time interval
in between each retransmission but on the interval
in between each packet reception. As the trip time is
almost constant, we can assume that those two
durations are equal.

Figure 5: Sending SYN, then ignoring SYN-ACK
replies

4.3 Modeling and statistical analysis

Automating this method requires several
components:

1. A test and result model.

2. A raw results analysis module.

As the packets may cross an unstable network, such
as the Internet, it is likely that the delay between
successive packets (λi) doesn’t exactly equal the
delay between these same packets (ti) at the moment
they were sent. See Figure 5.

When two packets are received with a 3.01 second
time interval it is very probable that the emission
time interval was 3.0 seconds. But some algorithm
implementations use 3.2 seconds as a time interval
in between packet emissions. The gap between 3.2
and 3.0 is too small for distinguishing one form to
the others.

To avoid this problem it is possible to use the TCP
Timestamp option, and then gain a better
knowledge of when the packet was emitted, at least
relatively to the target time reference. Asking for the
emission time for every packet on the target
machine increases the accuracy of time interval
measures. Nevertheless, using timestamps may be
intricate as the number given by the TCP timestamp
option isn't exactly the date. Rather it is Operating

© Intranode Software Technologies – 2002 7

System dependant increment (generally ranking
from 1 ms to 1 second).

This method is based on the reference fingerprints
creation and then on a comparison with the
experience results. The norm used to measure those
distances is the distance in between number series.

Distance = Σ | λi - δ i | , λ i is the time interval
associated to the reception time for packet i, δ i is
element i from the fingerprint.

Therefore the qualified OS is the one whose
distance is the shortest. This distance does not
consider some important packet characteristics such
as flags (SYN, ACK, RST, FIN...) used to know the
tested machine state or sequence and
acknowledgement numbers used to point out some
differences between different implementations.

Those features improve the results given by the time
measure method by rejecting some fingerprints.

5 RING: implementation And
Practical Results

As a proof of concept, we developed the RING tool.

5.1 Libraries

In order to be portable RING has been developed
using standard C programming language and some
specific UNIX libraries such as Dug Song’s Libdnet
library [12], Mike D. Schiffman Libnet library [13]
and Lawrence Berkeley national laboratory Libpcap
library [14].

The Libdnet library is mainly used for firewall
control. It provides a development API allowing to
control several UNIX firewalls (ipchains, ipfilters,
ipf...)

Libpcap is a very common library used to listen and
analyze packets on a network without having to use
the conventional IP stack.

Libpcap used by RING is taken from NMAP
(including Fyodor's modifications).

5.2 Algorithm

The initial arguments needed to perform OS
detection with RING are the target host IP address,
an opened port on this host, the scanner IP address,
and the network interface used to listen to the target
responses.

Then RING performs the following internal and
network actions:

− Source port choice.

− Using libdnet, set up a local filtering function
for blocking every incoming packet from the
target machine.

− Using libpcap (pcap descriptor opening), start
the packet listening using the filter defined
above.

− Using libnet, send a TCP SYN packet to the
target machine.

− Listen to the responses for a default or user
adjusted delay.

− Compare the obtained responses to the known
signatures.

This comparison is based on various parameters:
measured values, global duration of measurement,
the signature itself and global duration of signature
measurement.

Global durations are important. For instance, after
10 seconds it is not possible to distinguish FreeBSD
from Windows 2000, the behavior of those two
systems are identical. 12 second after the beginning
a 3rd SYN-ACK may be received and permit
separation between these Operating Systems.

This is the reception or the not-reception of a
segment 12 second after the 3rd SYN-ACK that
makes it possible to highlight the difference.

Let δ i (0<i<n)-n elements of signature-and λ j
(0<j<m) the m taken measurements. Let T_S
duration for the signature generating and T_M
duration for generate the fingerprint.

The signature can be rejected if:

© Intranode Software Technologies – 2002 8

− n>m and T_S<T_M

− n<m and T_S>T_M

I.e. like in the signature, it was envisaged the arrival
of a packet and that waiting time was sufficiently
long (so that it is taken into account), the packet did
not arrive. That makes it possible to exclude this
signature.

The best signature candidate is the one that
minimize the distance Σ | λi - δ i| , (1<i<min(n,m)).

Note that RING is available in two different flavors:
standalone program and patch for NMAP
2.54BETA30.

5.3 Practical Results

This method offers good accuracy in cases where
other tools are tricked. For instance it is possible to
differentiate a Win2K from a FreeBSD, even when
hosts are hidden behind a commonly configured
firewall.

Win2K and FreeBSD implementations have a very
similar behavior as they share the same IP stack
technology. If there is just one opened port on the
tested machine NMAP will confuse them most of
the time.

If the technologies are very close, this is not the case
for timeouts values, and choices concerning “Reset”
packet sending. This is enough for RING to
differentiate these Operating Systems, as shown in
measure table hereafter.

Retries Microsoft

Windows 2000
FreeBSD 4.4

1st 3 3
2nd 6 6
3rd No more retries 12
4th 24

Reset No Reset Sent Reset after 30
sec.

RING is also capable of distinguishing versions of a
same Operating System:

Retries Linux 2.2.14 Linux 2.4

1st 3,5 4,26
2nd 6,5 6
3rd 12,5 12
4th 24,5 24
5th 48,5 48,2
6th 96,5 No more retries
7th 120,5
8th No more retries

Reset No Reset No Reset

Retries Windows 98 Win 2K

1st 3 3
2nd 6 6
3rd 12 No more retries
4th No more retries

Reset No Reset No Reset

The following examples show the differences
between various equipments:

Retries Minolta

Printer
Cisco

Router
3COM
Switch

1st 4,5 2 3,5
2nd 4,5 3,9 4,4
3rd 9 5,9 4,4
4th 18 No more

retries
4,4

5th 36 4,4
6th 72 4,4
7th 144 4,4
8th 285 4,4
9th 576 4,4

10th 169 4,4
11th 169 4,4
12th 169 4,4

Reset Reset No Reset No Reset

Note that, after a certain number of retries some
implementation stop retransmitting by sending a

© Intranode Software Technologies – 2002 9

RST packet to warn the scanner machine the
transmission has been broken.

6 Discussion and extensions

6.1 Advantages

The main advantage of RING’s method is the use of
only one opened port. If the target system is well
protected, behind a firewall, chance are that only
one port will be open, all other being filtered.

With this kind of configurations, tools such as
NMAP are not as efficient because lots of NMAP
tests are based on closed ports.

Moreover, the proposed technique uses a standard
TCP packet. RING testing won’t disturb the
machine.

Only few implementations change their TCP state
diagram between two versions.

There are only a few differences between Win98
Millennium edition, Windows 2000 and Windows
XP. Nevertheless, in order to improve their
efficiency the values used by the algorithm are
changed more often.

As a matter of fact, the proposed method has a
better accuracy than the classical techniques for
some implementation.

On the other hand, note that this method takes more
time than techniques used by NMAP or Xprobe.
This is an inherent drawback as successive times are
measured.

6.2 Protection

What are the available protections to escape RING
Operating System detection? As the packet sent is
standard and unique, it is impossible to distinguish
it from any normal traffic on the target machine.

Packet retransmissions are visible but packet loss
and retransmission are normal for any network.

If an IDS aborts a connection in order to prevent
too much information from leaving the network it is
going to decrease the TCP error recovery capacities.

With some Operating Systems, it is possible to
modify some elements in the TCP/IP stack, allowing
the system to hide its identity to RING. This method
is not advised because it is dangerous for TCP/IP
stack stability.

A possible method is to hide the machines behind a
proxy or use Firewall that implement SYN Relay or
SYN Gateway techniques. SYN Relay or SYN
Defender is use to protect host against TCP
Flooding.

Thus, the audited stack TCP/IP is the stack of the
Firewall instead of the tested host.

SYN Relay principle

If after a certain time no ACK receive by FW, the
connection is aborted. Otherwise, the transmissions
continues:

© Intranode Software Technologies – 2002 10

SYN Gateway principle

If after a certain time no ACK receive by FW, the
connection is aborted:

Otherwise, the transmissions continues:

6.3 Further improvements

There exist other states in TCP transition diagram
that will show similar behavior, trying to reinject
supposedly lost segments. This is the case for
FIN_WAIT_1 state that can be used to corroborate
previous OS deductions and / or bypass some SYN
defenders.

FIN_WAIT_1 is a really interesting state as it allows
a TCP flag differences analysis. Those differences
are similar to the ones used by Nmap, but Nmap
can’t see them because it is necessary to put the
machine in a FIN_WAIT_1 to observe them.

The interesting fact about this method is that it will
bypass SYN gateway mechanism, and perform OS
fingerprinting tests on the real target.

Retries Linux 2/4 Win 2K

1st 0,8 3
2nd 1,3 6
3rd 2,6 12
4th 5,2 24
5th 10,5 48
6th 20,8 No more retries
7th 41,6
8th No more retries

Reset No Reset No Reset

Further researches on this topic could concern
independence in regard to network performance
variation and global robustness of RING detection.
Indeed, we experiment some instabilities during
some measurement sessions. Repetitive measures
with some aberrant value detection may help in
cases where the network is very unsteady. As
indicated in § 4.3, we may use the timestamp TCP
field in some cases and then calculate more precise
duration between successive segments sending.

Lastly, we feel that known signature file must grow,
and guess that open source developer’s community
will help. We encourage sending comments and
newly found signatures to ring@intranode.com

7 Conclusions

Figure 6: Synoptic of Operating System
fingerprinting technologies, now including

temporal analysis

RING uses a brand new Operating Systems
detection technique, that relies on very common and
noiseless TCP traffic. Automated vulnerability
assessment engines may greatly benefit form RING,
especially when used in conjunction with other
techniques (see figure 4).

For further reading and information concerning
RING, a full paper can be found at this URL:

© Intranode Software Technologies – 2002 11

www.intranode.com/site/techno/ring-full-paper.pdf

The open source version of RING, with associated
libraries, man page and an evolutive signature
database can be found at this URL:

www.intranode.com/site/techno/techno_articles.htm

Any comment or suggestion may be sent to the alias
ring@intranode.com

8 Acknowledgements

The authors would like to thank Fyodor, D. Fort,
P. Auffret, F. Frade, A. Floch and C. Patel for
valuable comments.

9 References

[1] Fyodor, NMAP, www.insecure.org/nmap

[2] Arkin, O., X-Probe,
www.sys-security.com/html/projects/X.html

[3] Postel, J. (Sep, 1981), RFC 793 –
Transmission Control Protocol

[4] Paxson, V. and Allman, M. (Nov, 2000), RFC
2988 – TCP Retransmission Timer

[5] Savage, QueSO,
savage.apostols.org/projects.html

[6] Zalewski, M. (Apr, 2001), Strange Attractors
and TCP/IP Sequence Number Analysis

[7] Veysset, F. (Jun, 2001), 13th Annual FIRST
Conference – OS Fingerprinting Revisited

[8] Comer, D and Lin, J. (1994), Probing TCP
implementations
www.cs.purdue.edu/homes/lin/probe.tcp.html

[9] Stevens, W. R. (1994), TCP/IP Illustrated,
Vol. 1

[10] TCPDump, www.tcpdump.org

[11] SendIP, freshmeat.net/projects/sendip

[12] Libdnet, libdnet.sourceforge.org

[13] Libnet,www.packetfactory.net/Projects/Libnet

[14] Libpcap, www.tcpdump.org

© Intranode Software Technologies – 2002 12

10 Annex 1 – Main Fingerprinting Techniques Comparison

OS Fingerprinting
Techniques Comparison

Banner
Grabbing

ICMP replies Non standard
segments

Sequence
analysis

Time based

History
Classical implementation Plenty X-PROBE NMAP ? RING
Created by Hackers Ofir Arkin

F. Yarochkin
Fyodor M. Zalewsky

Guardent
Intranode

First released ? Aug, 2001 Jun, 1998 Apr, 2001 Mar, 2002
IP Protocol & Service
Used protocols Service related UDP & ICMP IP, TCP, UDP &

ICMP
TCP TCP

Open TCP port requiered Service related No Yes Yes
Closed TCP port requiered No No No No
Closed UDP port requiered No Yes

The more the
better

No No
Firewall concerns
Bypass filtering routers Always Rarely Generally Generally Generally
Bypass SYN relays Always Always Rarely Never Never
Bypass application proxies Rarely Never Never Never Never
Outgoing firewall neutral Always Generally Generally Always Always
IDS concerns
Detection Hard Possible Easy Easy (?) Hard
Blocking Hard Possible Possible Possible Hard
Misc.
Learning functions No No Yes ? Yes
KB size (March 2002) ? ~ 20 (?) > 600 ~ 10 (?) ~ 30
Target hosts disturbance None None Rare Possible None
Best match feature No ? Yes ? Yes
Defensive measures Banner

rewriting
ICMP blocking

at firewall
Firewall or host

stack tuning
SYN Relaying SYN Relaying

© Intranode Software Technologies – 2002 13

11 Annex 2 – Ring Man Page

NAME
 ring 0.0.1 - Remote Identification Next
Generation.
 Remotely detects OS types and versions.

SYNOPSIS
 ring [-v][-f fingerprint][–t timeout] –d target_ip
 –s source_ip –p open_port –i device

DESCRIPTION
 Ring performs remote Operating System detection based
on
 temporal analysis of target reemitted SYN-ACK segments.
 measured values are compared to reference values
stored
 in the fingerprint file using a best match algorithm.

OPTIONS
 -d target
 IP address of the tested host
 -s src
 IP address of your host
 -p open_port
 An open TCP port on the target
 -i device

the name of your network interface for reach
tested host

 -t timeout
 duration for waiting packet
 -v(erbose)
 For analysis and debugging purpose.
 -f(ingerprint) fingerprintfile
 Use alternate signature file.
 default is ./fingerprint

TIPS
 The same signature may appear more than once in
a
 signature file, with slightly different values.

 It might be usefull to create specialized
signature
 files: one for intranet, one for internet with
possible
 distortion...

