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Abstract
Flaws due taace conditions in which the binding of a name to an object changes
between repeated references occur in many progk&lenexamine one type of this
flaw in the UNIX operating system, and describe a semantic method for detecting
possible instances of this problewe present the results of one such analysis in
which a previously undiscovered race conditiewflvas found.
1. Introduction
Ordinary bugs and miscogfirations prevent applications or systems from functioning cor
rectly. By contrast, security holes or vulnerabilities enable a user (callgttibake) to gain priv-
ileges, access to data, or the ability to interfere with otlveosk via by exploitation. Much
research, especially in thesffil of intrusion detectioffb][9], draws on characteristics of these
attackg12]. But many attacks can exploit a single vulnerabilityplying thatthe characteristics

of the fws themselves are more fundemental and should be of interest.

This work focuses on a semantic characteristic of one class of the time-of-check-to-time-of-
use (OCTTOU) flaws.A TOCTTOU flaw occurs when a program checks for a particular charac-
teristic of an object, and then takes some action that assumes the characteristic still holds when in
fact it does notThis particular fiw has a distinguished lineage, being described by both the Pro-
gramAnalysis (PA) project[3] and the Research Into Secure Operating Systems (RISOS) project

[1] as a subclass of the class of timing or synchronizatovsfl

A subclass oTOCTTOU flaws, which we calTOCTTOU binding faws arise when object
identifiers are fallaciously assumed to remain bound to an obbjeetesults in this paper demon-
strate the déctiveness of a semantic approach to deted@@TTOU binding faws.The next
section shows that this problem is severe enough to be worthy of examination. Section 3 describes
two characteristics o0fOCTTOU binding faws, and section 4 presents a tool that detects some
TOCTTOU binding faws. Section 5 demonstrates the unsolvable nature of the general problem,

and discusses the approximate relative power &drdifiit types of analyzer$he fnal section
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offers some comments on checking for thesedldynamicallyand using logs.

2. Demonstration of the Problem

The analysis in this paper focuses on application-level programs rather than on the operating
system. Many operating systems allow some trusted user complete control over the system.
Although such a privileged user violates basic security design prinflplest eases problems of
administrationAccess to these users requires either a password or use of a mechanism by which
the privileged user delegates privilege to a set of utiliiee. UNIX operating systeiji4] is one

of the bettetknown, and most widely-used, systems to use this scheme.

As the delegation of rights creates potential security problems, analyzing these utilities to
which rights have been delegated will provide insight into vulnerabilities on the systems where
they appearFew attacks exploit spedfioperating system kernehis; most exploit #ws in
these utilitiesA method of locating theseafks would enable these attacks to be detected or pre-
vented.As privileged UNIX programs are available either commercially or onAtbed Wide

Web, such a method would allow sites to verify software before installation.

The archetypalOCTTOU binding faw in a privileged program on the UNIX operating sys-
tem arises when a setuidrmot program is to save data in kefowned by the user executing the
program.The program should not alter thiefunless the user could alter tHe Wwithout any spe-
cial privileges. Code to do so typically looks like this:

if (access(filename, WOK) == 0){
if ((fd = open(filenane, O WRONLY)) == NULL){
perror(fil enane);
return(0);

}

/* nowwite to the file */
If the program were to omit thecces§) system call, theper(2) system call would always

succeed, because théeetive UID of the process ot If the user executing the program could
not write to the fe, the accesssystem call would return -1 and the open would never be
attempted. So this fragment allows the process to write tol¢hi& find only if, the user execut-

ing the program could do so.

If the object referred to bfflenamechanges between the two system calls, though, the second

object will be opened even though its access was never checked (accessrsb dhgelit was
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Figure 1. Example of thEOCTTOU binding faw.

checked).

The scenario in Figure 1 is an example of IBCTTOU binding faw. Figure 1a shows the
state of the system at the time of #ueessystem call; the solid arrow indicates Hueesgefers
to “tmp/X”. Both “/tmp/X” and “/etc/passwd” name distinct objects. Howetsefore the process
makes itopensystem call, “tmp/X” is deleted and a direct alias (hard link) for “/etc/passwd” is
created, and is named “/tmp/XThen theopenaccesses the data associated with “/etc/passwd”
when it opens “tmp/X”, since “/tmp/X” and “/etc/passwd” now refer to the sameHigure 1b
shows this, with the dashed arrow indicating which data is actually read and the solid arrow indi-
cating the name given tipen The unprivileged process can then write to the protected password
file. Several versions of the terminal emulation progreer(1) [16] suffer from this faw, which

arises when logging sessions tole. fi

Another instance of thisav occurs on SunOS and HP/UX systefise progranpasswil)
allows the user to name the passwoelds a parametekn attacker can gain access to any other
users accounts using a variant of the attack presented gbpvender normal conditions, the

passwdprogram takes the following steps:
1. opens and reads the passwolgltih get the entry for the user; then closes the passvard fi
2. creates and opens a temporalg ¢alled “ptmp” in the directory of the passworéfi

3. opens the passworddiagain, and copies the contents to “ptmp”, updating the changed infor

mation; and

4. closes the passworddiand “ptmp” and renames “ptmp” to be the passwded fi
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The attack works as follows. Suppose the attacker can write to directory “piin’attacker
creates a bogus passwoid fiamed “pwd/.rhosts” with the following as thesfientry:

| ocal host attacker :::::
and the remainder of thdefia copy of the real passwortkefiThe attacker spec#s this fie to be

the password I when callingpasswd During steps 1 and 3, the attacker wants the directory
containing the passworddito be “pwd”; during steps 2 and 4, the attacker wants the directory
containing the passwordldito be thetargets home directory (belonging to the user being
attacked).The following steps create a “.rhosts” that allows the attacker to log into get'dar
account without authenticatioAs thepasswdprogram is setuid tooot, lack of privileges over

targets home directory is irrelevant.

All references to the passwortefs directory will be made through an indirect alias (symbolic
link) called “link” to enable the referent of that directory name to be chafdedsequence of

events, augmented by the attackerctions (A, B, and C), follows:

1. Thepasswdprocess opens and reads “link/.rhosts” to get the entry for the user; then it closes

that passwordlg (see Figure 2a).
A. The attacker changes the symbolic link “link” to point totdrgets home directory “taget”.

2. The process creates and opens a tempotargdiled “ptmp” in the directory of the password

file, which in this case is “link’and also “taget” (see Figure 2b).
B. The attacker switches “link” back to “pwd”.

3. The process opens “link/.rhosts” again (which is the passwlerchdmed in the command
line), and copies the contents to “ptmp”, updating the changed information. Note that “ptmp”

is still in “target” as it was opened in step 2 (see Figure 2c).
C. The attacker switches “link” back to “tgat”.

4. The process closes “link/.rhosts” (which involves no interaction with iaedime “link” as
only file descriptors are involved) and “ptmp” and renames “ptmp” to be “link/.rhosts”; as
“link” is now “target”, this makes the passwortfinto the victim$ “.rhosts” fie (see Figure
2d).

At this point the attacker catogin(1) to the victim$ account. Figure ummarizes this attack.
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Figure 2 An example of th@ OCTTOU binding faw usingpasswd

/ /
AN .
/usr/spool/mall etc /usr/spool/mail etc
b's op passwd bishop— passwd
g s \
bishops emaT\ ,
Istat(“/usr/spool/malI/blshop” stbuf) open(“/usr/spool/méiI/bishop”, O_WRITE
Figure 3a. Figure 3b.

Figure 3.Thebinmail race condition attack.

Another attack, called th@nmail race conditiorj7], lets the attacker write to anyefion the
systemThebinmail program delivers mail by writing it into the recipienthailbox As a security
check,binmail requires the mailbox to be a regulde,fand not a symbolic link. But in this check

lies aTOCTTOU binding faw. The following two steps consitiute the check:

1. Use thdstat(2) system call to get informationléitype, protection modejc) about the mail-

box.
2. If the mailbox is a regularl@, append the letter to the mailbox rast.

TheTOCTTOU binding faw lies between these steps. Figuresi3aws the state of the system
at the time of thédstat system callThe mailbox fie “/usr/spool/mail/bishop” is a regulatdj so

binmail continues. But beforbinmail can open the mailboxIdi that fie is deleted (by the
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Figure 4. Graphical diagram of programming inter@iscall-Obegins the interval, arsyscall-:
ends it.

attacker)and a new fe with the same name is creatdthis file is a link to the system password

file. Figure 3b shows the state of the system &ftenail opens the mailbox|§; it is actually
opening the link, and hence the passwdel flow the letter will be appended to the password
file; if it contains the appropriate contents, the attacker can now log in as the superuser without
any password. Note thhinmail appends asoot, so the fie can be created if it does not exist, and

is altered if it does exist.

3. A Semantic Characterization of TOCTTOU Binding Flaws

A TOCTTOU flaw occurs when two events occur and the second depends upost tiaif
ing the interval between the two events (see Figyreettain assumptions from the results of the
first system call inflence the second. If some action during that interval invalidates those assump-
tions, the results of the second action may not be what was intended. (Exploiting this situation
requires an attacker to act during the intervale more general term “race condition” captures

the race between the attacleetrying to invalidate assumptions before the second action occurs.)

Call the existence of such an interval fregramming conditiorand the interval itself the
programming intervalHaving found this condition holds, the attacker must be ablddot die
assumptions created by the prografir'st action.That condition is thenvionmental condition
Both conditions must hold for there to be an exploitdid&TTOU binding faw.

In the initial example, thaccesssystem call creates the assumption that the user is authorized
to alter the fe “/tmp/X”. The openacts upon that assumption. So the programming condition
holds. If the attacker can alter the referent of the name “/tmp/X”, then the environmental condi-
tion also holds and an exploitall® CTTOU binding faw exists (and given the semantics of “/
tmp”, Figure 1 shows it does indeed hoMjere the fe in a directory that the attacker could not
alter, the environmental condition would not hold and no exploitd@€TTOU binding faw

would exist.The other two examples have similar conditions.
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3.1. Programming Condition
The UNIX system provides two d#rent forms of naming, with dérent semantici2][13].
The frst form is a fie path nameThe UNIX file system is conceptually a tree, with interior nodes
being directories and leaf nodes beingsti devices, or other entitiékhe path name spea@8 the
path through the tree from the root to thgémodeTo access the object from a path name, the
kernel begins at the beginning of the path name, and accesses each component named in the path.

Each interior node contains the location (or address) of the next node in thEhegblenultimate

node in the path contains the location of the object; from this the object may be reti@Gued.

ceptually no caching of names to addresses is done; the name is mapped into the object each time.

The second form ofl& naming is thele descriptarFile descriptors are assigned tola éin
a perprocess basis, and bind directly to the objaften a process requests thatedescriptor
be assigned to an object, it provides tleegath name of the objedthe system maps this address
to an object, and returns a reference (tleedescriptor) to the object. References using tke fi
descriptor do not involve the system-wide object name (path name) but instead, the kernel uses a

file descriptor local to the process to access the object directly

Notice the diference in the way the addresses resolve to objects. File path names are resolved
by indirection, requiring the naming and accessing of at least one object other thenktbmd
addressed. File descriptors are resolved by accessindetheifig addressedhe former corre-

spond to (multiply) indirect pointers to the object, the latter to pointers to the object.

The diference in binding determines which pairs & System calls can bind the interval in
the programming condition. If the calls refer tedithrough descriptors, the binding of tHe fi
descriptor to the 2 cannot be changed by a second process. But if either refers tie tne di
path name, then another process can alter the binding between nante ifinldefienvironment
allows it. This observation defes pairs of system calls that all@@CTTOU binding faws to

occur

If two sequential system calls refer to the same object usiteg@ath name, the possibility of
aTOCTTOU binding faw arises. If one uses a name and the secoteldefcriptarand the fist

is not a call that maps aldi path name to a descript@TOCTTOU binding faw may arise. If

1. If the file path name has exactly one component, the parent node is implicitly added to the pathsas the fi
componentThe single exception is the root node, which is its own parent.
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both use fe descriptors, or one maps a name téeadiéscriptor that the second uses, the possibil-
ity of a TOCTTOU binding faw does not arise. Path names are indirect pointers, so one of the
interior pointers may be switched. File descriptors are direct pointers and hence not subject to

such fddling.

3.2. Environmental Condition

The goal of analyzing the environmental condition is to present an algorithmic technique to
determine if the assumptions implied by thetfcall will hold during the interval created by the
programming condition. If so, the race condition cannot be exploited. If not, iThanobject
may change in one of two ways: alteration of the binding between the name and the object, or

alteration of the object itself.

Consider a fe F that occurs in two system calls causing the programming condition to hold.

At the first system callf- refers to objedD, and at the secon#,refers to objecD,. Partition the

set of all users into two subsetsis the set ofrustedusers who will not alter the binding Bfin
the interval (that isD; = O,), andU is all otheruntrustedusersThe binding of the ke F to the

objectO, is trustworthyif and only if no member df can change the binding Bfwithin the

interval.

Define the Boolean function(l, 0):

I E true ifsomeu U can alter the binding abjecto in the intervall
w(l,0) = .
(1.0) O false otherwise

In what follows,d;, |, andf refer to path components.
Lemma 1. Let); be a directory object arfcan arbitrary objecThen

w(l, dy/dy/...[d /) =w(l, dy) Ow(l, dy) O...Ow(l, d) Ow(l, )
Proof: By induction om.

BASIS: n = 1. If the binding of the nanuh to the directory object is altered, theyif refers to a
new object and so the binding of the nadip# is also altered. If the binding of the nafite the
object is altered, then the bindingdyff is also altered. Hena®(l, d,/f) =w(l, d;) Ow(l, f).

HYPOTHESIS Fork = 1, ...,m=1, w(l, dy/dy/...[d/f) =w(l, dy) Ow(l, dy) O... Ow(l, dy) Ow(l, f).
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INDUCTION STEP Considemv(l, di/d,/.../d./f). If the binding ofd; changes, so will the binding for
the objecd,/.../d./f. Hencew(l, d,/d,/.../[d/f) =w(l, dy) Ow(l, dy/.../d/f) and so by the induction
hypothesisw(l, di/d/.../d./f) =w(l, d;) Ow(l, dy) O... Ow(l, d) Ow(l, f), proving the claim.m

Lemma 2. Let be an indirect alias of the padly.../d,. Then
w(l, 1) =w(l, dy) O...0w(l, dy).

Proof: An indirect alias is semantically equivalent to the path it contdihe. result follows

immediately from this observation and lemma 1. ]

The signifcance of these lemmata is the implications for the binding over an intervabé et
the programming interval, aridhe name of the object referenced by the two system calls delim-
iting I. Then ifw(l, f) is true, an exploitab[EOCTTOU binding faw exists.

The lemmata also suggest how to determine the valwefof a given objecb. Under the
UNIX model of fies, the owner of the object must be trusted, and the object must not be world

writable. Furtherif the group contains any members who are not trusted, the object must not be

group writable eithet So, to test the trustworthiness of a binding, simply check those conditions

for each component in the path name of thee fi

If the object is being written, then the current contents of the object are irrelevant as they will

be deleted. In this case, the trailing component of the object need not be hidlokeslver if the
object is being read, then altering the current contents ofi¢he &uficient to exploit a race con-

dition. In this case, the object itself must be trustworthy

4. A Prototype I mplementation of the Analysis
A static analysis tool scans a given progsasgurce code looking for potentEDCTTOU
binding flaws. Because ddrent computer systems havefeiént environments, if the analysis

program used one systesreénvironment, that result might be invalid on dedént systemThe

2. System specifisemantics may modify this rule; for example, on a SunOS, Solaris, IRIX, or HP/UX system,
if the object is a directoryhe sticky bit is set, and the next component of the path name exists, then the
directory may be world writabl&he semantics of the sticky bit in this context is that only the owner of an
object may delete it from the directory

3. Again, system constraints may require some checking. If the parent directory has the sticky bit set, and the
sticky bit semantics are as described in the previous footnote, ownership (but not permissions) must be
checked.
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static tool should report only intervals (by line numbers) on which the programming condition
holds.The (human) analyst would then check whether the environmental condition hold during

that interval, for each spedfsystem upon which the software is installed.

The static analyzer parses the input C program, and builds a control dependency graph and a
data fow graph. From the control dependency graph, the analyzer determines potential program-
ming intervals; from the dataoflv graph, the analyzer determines if thguanents to the system
calls create such an interval. Spexfiy, if both system calls usddinames, the static analyzer
determines if the gument are the same; if one usedearfame and the other &efdescriptorthe

analyzer determines if thédiname were bound to the descriptor when the descriptor is created.

Pointer aliasing complicates the datanflanalysis. If the pointers are well-behaved, then the
initialization identifes the variable to which the pointer refers; but if the pointers are ill-behaved,
determining the referent requires complete knowledge of memory as well axcqpeeaifvalues.

In essence, it requires the pointer to be evaluated when the program executes.

An even more complex problem is how the program will interact with the environment. For
example, suppose one system call accessleh&tinp/X” and a second refers to “../tmp/X”. If
these refer to the same object, a programming interval exists. Howeatarannot be determined
without knowledge of the processirrent working directoryAdding direct and indirect aliases

complicates matters even more.

A prototype tool checks programs written for the SunOS and Solaris versions of the UNIX
operating systenThe availability of those systems in our environment dictated this choice. Sev-
eral simplifying assumptions sped the development of the prototype (which is a proof-of-concept

program only).

The bounds of the programming intervals constitute s $implifying assumptionThe
analysis in Section 3.1 show three types of bounds: both system calle ussnfes; the initial
system call uses ddiname and the terminal one a descriptor; and the initial system call uses a fi
descriptor and the terminal one a name. Because of the complexities of tracking the path names
associated with objects assignéé flescriptors, the analyzer assumes both system calls bounding

the programming interval involve path names.

Selecting only the most common library functions is the second sicagiiin. The use of
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library functions conceals the underlying system calls bounding the programming intervals. Since
most interaction with I oriented system calls uses the standard I/O liptlaeylist of functions

includes the functions in that library which take a path name agament and invokel&-ori-

ented system cafls

The prototype analysis tool is a Perl script which understands function boundaries but not
local blocks, C language dependencies, nor interprocedural an@itysiprototype analyzer uses
pattern matching over the source code to approximate generating and scanning a call dependency
graph. It does no dataofl analysis, but assumes that the fiath name guments are lexically
identical in the system call§hat is, the prototype detects:

char tenpfil e[ 1024];

c.r.e;at (tenmpfile, 0600);

chown(tempfile, 0, 0);
but not:

char tenpfil e[1024], *newfile = tenpfile;

creat (tenpfile, 0600);

chowmn(newfile, 0, 0);
as in the latterthe aguments are lexically ddrent.

This analyzer was run asendmailversion 8.6.10, becausendmailhas been successfully
attacked in the past [16—2T]he output is ilAppendix 1 The analyzer reported 24 possible pro-
gramming intervals; after manual analysis, 5 met the programming condition. Given appropriate
environmental conditions and appropriate security policy elements, all 5 allow unauthorized
actions (sedppendix 2). Of the 5, one in particular allows users to violate a common element of
most site security policies by adding permission, allowing the attacker to read othecasiers’

dential fles or mail Appendix 3 shows the typescript of a sample attack.

5. AnalysisLimits
Given an arbitrary program, consider the existence of exploit@a&I TOU binding faws in
a program to be a properfyhen this property holds for at least one computable program. By

Rice’s theorem[10], the set of programs for which this property holds is undecidable, so no

4. The commanem(l) lists the system calls in objedes, among other externally defd labels.
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generic decision procedure exists to determine if all programs have this type of exploitable
TOCTTOU binding faw.

Consider those UNIX programs which exhibit the programming condition and the environ-
mental condition. LeE be the set of exploitablEOCTTOU binding faws in one such program,
and letR be the set of exploitablEOCTTOU binding faws that the analyzer reports for that pro-
gram. LetE' =E n R If E' = E = R, then the analyzer recisewith respect to the program. If
E = E # R then some exploitablBOCTTOU binding faws are not reported, so the analyzer is
defcientwith respect to the program.BHf = R# E, then all exploitabld@ OCTTOU binding faws
are reported, as well as some conditions which are not really exploitable race conditions; the ana-
lyzer isexcessivavith respect to the program. FinallfE' # R andE’ # E, then the analyzer is

incomplete

Deficient and excessive analyzers exist (trivial examples are the analyzer which always
reports no exploitablEOCTTOU binding faws and the analyzer which reports that every pair of
system calls causes an exploitab@CTTOU binding faw). Determining whether an analyzer is

precise or incomplete requires examining each of the two conditions in detail.

The programming condition requires detection of sequential system callgstha fivhich
must check for some property and the second of which must act on that priopfty, the fist
system call may simply gather information which is then chedKeel precise nature of the check
depends upon the needs of the action and the programmer; for example, access permission may be
checked usingccesgwhich performs the check) stat (which obtains fe information that can
then be checked). Furthehe distinction between system calls which “check” and system calls
which “use” is a product of the program; for example, a program which leststiibutes might
call statto obtain the information, whereas another program mighstzdlio check authorization
to accessThus a precise analyzer would require some means of determining which calls were

“checks” and which were “uses.”

The environmental condition complicates this. Given a set of system calls which could bound
the programming interval, the analyzer can report all possible programming intervals in a pro-
gram.The interaction of the environment with those potential intervals creates problems beyond
the trustworthiness of thddibeing accesse@he environment controls the interpretation of the

name of the fe used in the system calls. File aliases (both direct and indirect) and the low-level
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representation of secondary storage add more compl&€kigyanalyzer must have this informa-

tion available.

In short, a precise analyzer requires a complete representation of the environment induced by
the fle system, and knowledge of the pairs of system calls required for checks andlusfes.

this information is unlikely to be available in practise.

An analyzer is incomplete when it fails to report exploitallBECTTOU binding faws, and
exploitableTOCTTOU binding faws are reported erroneousiyne manner in which the former
can occur is clear; the latter occurs when (for example) data fire not adequately tracddhe

prototype analyzer described in the previous section is an example of an incomplete.analyzer

6. Conclusion

As static analyzers cannot be precise, can dynamic (run-time) analyzers be phkecise?
dynamic analyzer tests the environment during execution, and warns when an expl@@able
TOU binding faw occurs. Basicallfhe system call interfaces are maatifio track the guments
and the association ofdidescriptors and nameByo successive system calls meeting the pro-
gramming condition constitute a programming interval, and the trustworthiness of the object is
tested at both system calls. If the object is untrustworthy at either point, either an exploitable
TOCTTOU binding faw exists or a trusted user has made an.éfunther the test does not intro-
duce any neWwOCTTOU binding faws.

To elaborate, four combinations of trustworthiness are possible:

1. The object is trustworthy at both system cdllsen the object could not be changed during
the interval, and no exploitabl®® CTTOU binding faw occurs.

2. The object is untrustworthy at both system c@lisexploitableTOCTTOU binding faw

exists.

3. The object is untrustworthy at the initial system call but trustworthy at the terminal system
call. Then a trusted user changed those components of the bj@cté that were untrustwor
thy at some timd& in the interval. But from the initial system call to tifiean exploitable
TOCTTOU binding faw existed.

4. The object is trustworthy at the initial system call but untrustworthy at the terminal system
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call. Then a trusted user altered a component in the objesth to make it untrustworthgy
assumption (specdally, the defnition of “trusted user”) no trusted user will alter a compo-
nent to make a trustworthy object untrustworthy; if such a user does, that should not have

been trusted.

Dynamic analysis takes run-time environment into account and so provides a more precise
testing of the program. It may not be precise, since references to disk block numbers will bypass
virtually all reasonable checks. It could be made precise by having theedajifitem calls emu-
late the actions of the kernel in resolvinig fnames, but only at considerable expense. Further

dynamic analysis does not prevent 1@CTTOU binding faws from being exploited.

Many systems provide detailed audit capabilitessuming the log includes entries for the
expansion of every indirect alias, an analysis of the log entriedd@cfiesses would detect pro-
gramming intervals and, given an initial environment, could also check that the environmental
condition holds. From this, exploitable race conditions can be detected. Fasghke name of

the object is known, analysis of other logs could indicate if the condition was in fact exploited.

The detection of security problems arising from race conditions is amenable to testing based
on desired propertig8][11]. One such property is that the programming and environmental con-
ditions not exist simultaneously; the precise statement of this property will vary from program to
program, but if both conditions hold, a race condition may be exploited. Conyéirsledy pro-
gram contains portions of code for which the programming condition holds, the analyst can deter
mine under what conditions an exploitable race condition will afise.precise spectfations
needed to detect these problems varies from program to program, but a generalized template
would ameliorate the ditulty of writing such a property for each program testéds area is

under active research.

This work studiedTOCTTOU binding faws arising from fe system accesses. Processes
interact, as do network objects, and their representation is often as objects otheleshan fi
Whether a similar technique will work in that case, and if so what the programming and environ-

mental conditions should be, is an area for future work.
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able at ftp://nob.cs.ucdavis.edu/pub/sec-tools/ttagHigz. Release of the prototype race condi-

tion analyzer has not yet been approved.
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Appendix 1. Analyzer Output

This appendix shows the output of the analyzer run on the source ceeledinailversion
8.6.10. Only thoselés with possible problems are shown; the analyzer actually prints the name
of each fle it analyzes, whether or not théefcontains a potential problerhe lines beginning
with numbers list the potential race conditions; each lists the line number and system (library) call
that may cause the condition, and the commguaraent follows both.

alias.c:

429: f open, 432:fopen, map->map_file
conf. c:

714:nlist, 721:nlist, %
del i ver. c:

2186: stat, 2262:chnod, fil enane
mai n. c:

708: stat, 784:chdir, QueueDr
1325: freopen, 1336:open, "/dev/null"
gueue. C:

118: open, 144:renane, tf

118: open, 364:renane, tf
144:renane, 364:renane, tf

694: rename, 702:fopen, d->d_nane
977: fopen, 1028:renane, (f

977: fopen, 1149:renane, (f

1028: renanme, 1149:renane, df
1036: unl i nk, 1149:renane, df
readcf . c:

612: stat, 625:access, filenane
612: stat, 630:fopen, filenane
625: access, 630:fopen, filenane
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reci pi ent.c:

645: | stat, 646:stat, filenane

645: | stat, 648:stat, filenane

646: stat, 648:stat, filenane

util.c:

462: stat, 505:stat, fn

504: 1 stat, 505:stat, fn

462: stat, 507:stat, fn

504: | stat, 507:stat, fn

505: stat, 507:stat, fn
Appendix 2. Analysis of Output

This appendix describes the analysis of the race conditions iddriifi the human analyst
after looking at the causes of the outpuhAppendix 1. In the following, the analyst assumes that

the security policy of the site includes the following elements:
1. A user can change the protection modes of ke ffie or she owns, and no others.

2. If a user cannot read or search a diregtoeyor she should not be able to discover anything

about the fes or fle names in that directary

3. If aregular fie is to be read, a terminal (or other non-regula) fnay not be substituted for

that regular fe.

4. The defnition of asendmailconfguration fie macro class is set by the system administrators

and not by unprivileged users.

The analyst also assumes teahdmailruns with system privileges, usuailyot The race condi-
tions are listed fst; the analysis of the other reported intervals follows.

deliver.c, 2186:stat, 2262:chnod, fil enane
The routinemailfile sends mail to a namedefi If the mail were to be written to defiin a

directory writable by the attacker (the environmental condition), a race condition &kists.
attacker links to thatlé any object with the desired permissions (which must allow the sender
to write to the object)Then, between thsetat (2186) and theehmod(2262), the attacker
changes thel& name to be the et fle nameAt line 2262 the protection mode of theger

file is set to the protection mode of the originlal. fi his action violates policy element 1.

mai n.c, 708:stat, 784:chdir, QueueDr
Thestatto determine ownership of the queue directory occurs befohtheto prevent the
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user from runninggendmailand switching into a protected directoBut if an attacker can

switch the referent of the name of the directory to a protected (unreadable and unsearchable)
directory between thetatand thechdir, sendmaibill list the names of kes beginning witlgf

in that directoryviolating policy element ZThe environmental condition is that the cgnfi

ured mail queue directory (usually “/usr/spool/mqueue”) be untrustworthy

readcf.c, 612:stat, 625:access, fil ename
readcf.c, 612:stat, 630:fopen, filename

Given a line insendmail.cthat defines a class from the contents ofle, 8tatchecks that the

file is a regular . If the object named istatis a symbolic linkstatreports on the object to
which the link refers. If that link, or the object to which it is linked, is untrustworthy (the envi-
ronmental condition), then immediately after #tatthe link or object can be replaced by a
link to a non-regular le, such as a terminarhe fie is read usinfgetg3), which also accepts
input from a terminalThis action violates policy element 3.

readcf.c, 625:access, 630:fopen, filenane
This race condition is a modifition of the previous two, the only change being that the

attacker changes the untrustworthy object after access is checked but before the object is

openedThis action violates policy condition 4.

The following reports appeared to the scanner to be programming intervals but upon further
analysis were not:
alias.c, 429:fopen, 432:fopen, map->map_file

The second function is in a conditional entered only whenritdiinction fails

conf.c, 714:nlist, 721:nlist, %
They are in a string gument toprintf

mai n.c, 1325:freopen, 1336: open, "/dev/null"
The frst function opens to read from it, and the second function to write to it, so the second

function would make any reads reti#@®F — which is exactly what reads frotaev/nulldo.

gueue.c, 118:open, 1l44:renane, tf
gueue.c, 118:open, 364:renane, tf
gueue.c, 144:renane, 364:renane, tf

These functions open temporare$, and if theopenfails or the fie is locked, the temporary
file is renamed so a new one can be tried

gueue. c, 694:renane, 702:fopen, d->d_nane
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If the renameis reached, the next statement moves the @f control to the top of the loop
and a new fe name is read; so the two functions will never be executed sequentially

gueue.c, 977:fopen, 1028:renane, (f
gueue.c, 977:fopen, 1149:renane, df
gueue.c, 1028:renane, 1149:renane, (f

Therenames executed only when thefective UID and the owner of thddiare diferent or
the flie contains an invalid line. In both cases, the name is reset to a constrained lgueue fi
name which will be dferent than any otherdi name.

gueue. c, 1036:unlink, 1149:renane, (df
The routine returns after thmlink, so at most one of these functions will be executed.

reci pient.c, 645:1stat, 646:stat, filenane
recipient.c, 645:Istat, 648:stat, filenane
reci pient.c, 646:stat, 648:stat, filenane

Only one of the functions is ever executed.

util.c, 462:stat, 505:stat, fn
util.c, 504:1stat, 505:stat, fn
util.c, 462:stat, 507:stat, fn
util.c, 504:1stat, 507:stat, fn
util.c, 505:stat, 507:stat, fn

The functions have dd#rent aguments in the same variable on each call.

Appendix 3. Sample Exploitation of the Vulnerability
What would an exploitation of therdt vulnerability inAppendix 2 look like?This shows the
hypothetical result of one such exploitation.

1 %cat /.forward

sysadm ns, / usr/ spool / root | og

2 %ls -1d /usr/spool

dr wxr wWxr wWx 1 root 512 Dec 5 21:13 /usr/spool
3 %ls -1d /usr/spool/rootlog

STWI--r-- 1 root 526 Dec 10 11:34 /usr/spool/rootl og
4% 1|s -sail /etc/pwd/ shadow
S R 1 root 1329 Nov 16 16:58 /et c/ pwd/ shadow

5 % runrace /etc/pwd/ shadow
won: /etc/pwd/ shadow protecti on nodes changed
STWr--r-- 1 root 1329 Nov 16 16:58 /et c/ pwd/ shadow

1. The letter will be appended to the naméel An alternative is to look for bounced mail,

which is appended to thédfi“dead.letter” using the same delivery mechanisms.
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2. The mail fle “/usr/spool/rootlog” is in a world writable directory and so can be deleted.
3. The mail fle is world readable.

4, The shadow passwordefi(which holds hashed passwords) is protected to prevent users

from copying the hashed passwords and launching dictionary afdcks

5. The attack tool “runrace” sends mail to root, and as that mail is being delivered tries to
replace “/usr/spool/rootlog” with “/etc/pwd/shadow”. If the replacement succeeds, the

protection modes of “/etc/pwd/shadow” are reset to those of “/usr/spool/rootlog”.

We reported this security problem to the authasesfdmail and thesendmail8.7 base distri-

bution fixes the problem on all systems witfchmod?2) system call.
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