Exam ni ng port scan methods - Anal ysi ng Audi bl e Techni ques

whi t epaper by det hy@ynner gy. net

Abstr act

I will attenpt to enunerate a variety of ways to discover and map
internal/external networks wusing signature-based packet replies and known
protocol responses when scanning. Specifically, this docunent presents all known
techni ques used to determ ne open/closed ports on a host and ways an attacker
may identify the network services running on arbitrary servers.

1.1 Introduction

This paper will provide an in-depth analysis of known port scan nethods, wth
exhaustive information for each technique used in the wld today to map and
identify open and cl osed ports on various network servers.

Note: This paper will not describe techniques used to fingerprint operating
systens nor identify daenon versions (banner scanning).

Wth an epidem c of port scan instances occurring each and everyday, it should
be recogni zed the ways an attacker could probe network hosts using a variety of
techni ques ainmed to avoid detection whilst obscuring the sender's true source.
Under st andi ng actions to defend against these network oriented scans is first to
identify and acknowl edge the ways a scan can present appearing as normal inbound
traffic.

Port scanning is one of the nost popul ar techniques used in the wild to discover
and map services that are listening on a specified port. Using this nethod an
attacker can then create a |ist of potential weaknesses and vulnerabilities in

Page:

1

NtWaK0 NtWaK0

NtWaK0 NtWaK0

NtWaK0 NtWaK0

NtWaK0 NtWaK0

t he proposed open port |eading to exploitation and conprom se of a renote host.

One of the primary stages in penetrating/auditing a renmpte host is to firstly

conpose a |list of open ports, wusing one or nore of the techniques described
below. Once this has been established, the results wll help an attacker
identify various services that are running on that port using an RFC-conpliant
port list, (/etc/services in UN X getservbyport() function automatically

obtains this) allowing further conprom sation of the renote host after this
initial discovery.

Port scanning techni ques take formin three specific and differentiated ways.

* open scanni ng
* hal f - open scanni ng
* stealth scanning

Each of these techniques allow an attack to |ocate open/closed ports on a
server, but knowing to use the correct scan in a given environment depends
conpletely on the type of network topology, IDS, |ogging features a renpote host
has in place. Although open scans |og heavily and are easily detectable they
produce fairly positive results on open/cl osed ports.

Alternatively, using a stealth scan, my avoid certain IDS and bypass firewal
rul esets but the scanning nmechanism such as packet flags, used in identifying
these open/cl osed ports maybe of fset by dropped packets over a network, |eading
to fal se positives. Further discussion of this concept takes place in the FIN
scan section of this docunent.

Focusing nore directly at each of the above techni ques, these nethods can be

further categorised into individual scan types. Let's |ook at a basic scan nodel
whi ch includes PING sweepi ng:

Page:

2

| scan type

| open scan | | bhal f-open | | stealth | | sweeps | | m sc
|l | |l | |l | | | |l |
| | | | |
l_ l_ l____ |l |
| | | | | | | | | |
| TCP connect | | SYN flag | | FINflag | | TCP echo | | UDP/ 1 CWVP
| | |l | |l | |l | | error |

| |
| reverse ident | | I'P 1D header | | ACK flags | | UDP echo | | |
| | | "dumb scan" | (/- | |/ | | FTP bounce
| | | | |\ |
_____ | —
| | | |
| NULL flags | | TCP ACK
|\ | |l |
| |
_____ | —
| | | |
| ALL flags | | TCP SYN
| (XMAS) | |l |
|l | |
| —_—
| | |
| | | ICWP echo

| tcp fragnenting | |

Page: 3

|

|
| |
| SYN ACK fl ags

Di agram known scan met hods

The first nodes indicate the scan category which then traverses downward to |i st
the individual scans for that class.

1.2 open scan net hods

Open scanni ng techniques are blatantly easy to detect and to filter. This type
of scan nmethod involves opening a full connection to a renote host using a
typi cal three-way TCP/ I P handshake. A standard transaction involves issuing the
following flags to create an accepted connecti on:

client -> SYN
server -> SYN| ACK
client -> ACK

The above exanple shows a port answering our initial connection request with a
SYN| ACK. This response neans the port the packet was targeted to is in the
LI STENING (open) state. Once this full handshake has taken effect, the
connection wll be termnated by the client allowing a new socket to be
created/called allowing the next port to be checked, wuntil the maxi num port
t hreshol d has been reached.

Reversely, taking a look at a response from a closed port would reveal the

Page:

NtWaK0 NtWaK0

foll owi ng:

client -> SYN
server -> RST| ACK
client -> RST

The RST| ACK flags returned by the server is telling the client to tear dowmn the
connection attenpt since the port is not in LISTENING state thus is closed.

This nmethod is created through connect() system call, al l owi ng al nost
i nst antaneous identification of an open or «closed port. If the connect() cal
returns true, the port is open, else the port is closed.

Since this technique issues a three-way handshake to connect to an arbitrary
host, a spoofed connection is inpossible, that is to say a client can not
mani pul ate the true source IP, as a spoofed connection attenpt involves sending
a correct sequence nunber as well as setting the correct return flags to setup
for data transaction.

Cbviously this technique is easily identifiable on any inbound traffic because
it opens a full connection, thus all IDS and firewalls are able to detect and
bl ock agai nst this scan. However, because the connect() nethod uses the three
way handshake, results of this scan are about as accurate as you could get to
determ ne open/cl osed ports.

Advant ages : fast, accurate, requires no addi tional user privileges
Di sadvant ages: easily detectable and | ogged

1.2.1 - reverse ident scanning

This technique involves issuing a response to the ident/auth daenon, usually

port 113 to query the service for the owner of the running process. The main
reason behind this is to find daenons running as root, obviously this result

Page: 5

NtWaK0 NtWaK0

would entice an intruder to find a vulnerable overflow and instigate other
suspicious activities involving this port. Alternatively, a daenon running as
user nobody (httpd) may not be as attractive to a user because of |imted access

privileges. Unknowi ng to nost users is that identd could release m scellaneous
private information such as:

* user info
* entities
* objects

* processes

Although the identification protocol woul d appear as an aut henti cation
mechani sm it was not designed or intended for this purpose. As the RFC states,
"At best, it provides sone additional auditing information with respect to TCP
connections”". Needless to say, it should not be used as an access contro
service nor relied upon added host/usernane authenticity.

The formal syntax taken from RFC 1413 reveals the foll owi ng EBNF:

FORMAL SYNTAX

<request> ::= <port-pair> <EOL>

<port-pair> ::= <integer> "," <integer>

<EOL> ::= "015 012" ; CR-LF End of Line Indicator, octal \r\n equivalents
<integer> ::= 1*5<digit> ; 1-5 digits.

Using this grammar applied to the data we send to an arbitrary host piped to the
ident/auth port wll reveal the process owner running on a given port, even
t hough we initiated the connection.

Page:

6

Advant ages . fast, requires no additional privileges, return vital service information
Di sadvant ages: easily detactable

1.3 - half open scan nethods

The term 'half-open' applies to the way the client term nates the connection
before the three-way handshake 1is conpleted. As such, this scan mnmethod wll
often go unlogged by connection based IDS, and wll return fairly positive
results (reliability of open/closed port recognition).

1.3.1 - SYN scanni ng

The i nplenentation of this scan nethod is simlar to a full TCP connect() three

way handshake except instead of sending ACK responses we imediately tear down
the connection. A denonstration of this technique is necessary to show a half

open transacti on:

client -> SYN
server -> SYN| ACK
client -> RST

Thi s exanpl e has shown the target port was open, since the server responded with
SYN| ACK flags. The RST bit is kernel oriented, that is, the client need not send
anot her packet with this bit, since the kernel's TCP/IP stack code autonates
this.

Inversely, a closed port will respond with RST| ACK.

client -> SYN
server -> RST| ACK

Page:

NtWaK0 NtWaK0

NtWaK0 NtWaK0

As is displayed, this conmbination of flags is indicative of a non- [|istening
port.

Al t hough, this technique has becone rather easy to detect by many IDS, owing to
the fact that a paramount of Denial of Service (DoS) utilities base their
attacks by sending excess SYN packets. Fairly standard intrusion detection
systens are no doubt capable of |ogging these half-open scans: TCP wrappers,
SNORT, Courtney, iplog, to a nane a few, thus the effectiveness has dithered
over recent years.

Advant ages . fast, reliable, avoids basic IDS, avoids TCP three-way handshake
Di sadvant ages: require root privileges, rulesets block many SYN scan attenpts

1.3.2 - I P ID header aka "dunb" scanning

I D header scanning is a rather obscure scan nethod involving inplenentation
peculiarities in the TCP/IP stack of nopst operating systens. Originally this
techni que was di scovered by antirez, who described it's technical details in a
post to bugtrag. Evidently the basis of this scans inmplementation is reflective
on the SYN scan nethod, although involves a third party host to use as a dumy
source.

Before explaining any further it's inportant to recognize what a so- called
"dumb" host is. Contrasting to a bastion host, a silent or dunb host is a server
that sends and receives little to no traffic at all, hence the <characteristic
name endowed upon it. Locating one of these hosts requires nuch effort and host
sweeping itself, and is probably nore trouble than what it 1is wor t h.
Nevertheless, it is a genuine and creative scan, that brings a thirdhost into
play adding to it's obscurity.

Involved in this scenario are three hosts:

Page:

8

* A -> attackers host
* B -> dunb host
* C -> target host

Let's exanm ne this cycle.

* Host A sends a series of PINGs analysing the ID field, encapsulated within
the I P header to Host B. A dunb host will have the ID increnment the reply by
1 each tinme during the PING sequence.

60 bytes from BBB. BBB. BBB. BBB: seq=1 ttl =64 id=+1 win=0 ti ne=96 ns
60 bytes from BBB. BBB. BBB. BBB: seq=2 ttl =64 id=+1 win=0 ti ne=88 ns
60 bytes from BBB. BBB. BBB. BBB: seq=3 ttl =64 id=+1 win=0 ti ne=92 ns

* Host A sends a spoofed SYN packet to Host C using the source address of Host B
The renote port is any arbitrary port (1-65535) that the attacker wi shes to test
for open/closed responses. Host Cwill reply to Host B with one of two standard
responses:

-> SYN| ACK response indicates an open LI STENING port. Host B will then reply with
an RST bit flagged in the packet (automated by kernel).

-> RST| ACK will indicate a NON-LI STENI NG port, (a standard SYN scan nethod reply),
and Host B will ignore that packet and send nothing in reply.

Now, how could Host A know what flags were sent to Host B ?

Well, assuming the port was open on the target server, our series of paralle
PING s that Host A had been sending whilst the spoofed SYN packets were being
sent will hold our answers.

Analyzing the IDfield in these PING responses, one would notice a higher ID
i ncrement.

Page:

60 bytes from BBB. BBB. BBB. BBB: seq=25 ttl =64 id=+1 win=0 tinme=92 ns
60 bytes from BBB. BBB. BBB. BBB: seq=26 ttl =64 id=+3 win=0 ti ne=80 ns
60 bytes from BBB. BBB. BBB. BBB: seq=27 ttl =64 id=+2 win=0 tinme=83 ns

Noti ce the second and third packets ID responses contain values greater than 1,
hence an open port was |ocated. Any further increment of nore than 1 is
i ndi cative of an open port in Host B's responses, during this period.

Oiginally, the increment was 1, but because Host A sent a spoofed SYN to an
open port, Host B had to reply to Host C with the SYN ACK bit packet, thus
incrementing the ID field. Following this the PING response to Host A would then
in turn have a higher ID field, as suspected.

On the other hand, a closed port state on Host C would not require Host B to
send anything, so the IDfield in the PING response woul d not be incremented at
all.

60 bytes from BBB. BBB. BBB. BBB: seq=30 ttl =64 id=+1 win=0 tinme=90 ns
60 bytes from BBB. BBB. BBB. BBB: seq=31 ttl =64 id=+1 win=0 ti mne=88 s
60 bytes from BBB. BBB. BBB. BBB: seq=32 ttl =64 id=+1 win=0 ti me=87 s

As is shown, the IDfield is still bounded by a constant of 1.

Once again this is why a "dunb" host is required, so incom ng and outgoing
traffic is kept at a bare mnimumin order to decrease fal se- positive results.

In fact, a variety of scan nethods could be wused involving a dunmb host. This
scan is not limted to the SYN scan technique. Any nethod involving Host B to
respond to Host A's port reply could be practiced (hint: inverse mapping
t echni ques).

Page:

10

1.4 - stealth scanning

The definition of a "stealth" scan has varied over recent years fromwhat Chris
Kl aus, author of a paper titled "Stealth Scanning: Bypassing Firewalls/SATAN
Det ect ors" del i neat ed. Oiginally the termwas used to describe a technique
that avoided IDS and 1ogging, now know as "half-open" scanning. However,
nowadays stealth is considered to be any scan that is concerned with a few of
the follow ng:

* gsetting individual flags (ACK, FIN, RST, ..)
* NULL fl ags set

* All flags set

* pypassing filters, firewalls, routers

* appearing as casual network traffic

* varied packet dispersal rates

All scan the scans described bel ow use the inverse mapping technique for open
port assunptions.

1.4.1 - SYN| ACK scanni ng

Thi s techni que has been disregarded in nost, if not all, port scanners to date.
Ironically, the theory behind this method is not unlike the SYN nmethod, we cut
out the first step in our half-open TCP/IP setup. A standard response would act
as follows:

client -> SYN ACK
server -> RST

The above fl ags have denoted to the client that the port is in a non- [listening

Page:

11

NtWaK0 NtWaK0

NtWaK0 NtWaK0

state. Since the transm ssion control protocol realizes that no initial SYN was
sent, an immediate termnation response was sent out. In other words, the
protocol thinks there has been an error in the connection transaction to that
port when a SYN| ACK has been received without a SYN, as a result the reset flag
is sent back.

On the other hand a LI STENING port will not respond to these fl ags.

client -> SYN ACK
server -> -

As is seen, the server ignores the SYN ACK packet sent to an open port. Needl ess
to say the absence of the server's response packet to ours, will produce fal se
positives. Imagine sending a SYN ACK packet and receiving no response due to
stately packet filters, firewalls or even tinmeout limts blocking transm ssion

thus the scanner would then produce false positives for that port. Naturally
this scan is not considered as reliable as TCP connect() scans because of this

very reason. This type of assunption falls under what is known as "inverse
mappi ng" .
Advant ages . fast, avoids basic IDS/firewalls, avoids TCP three-way handshake

Di sadvant ages: |less reliable (false positives)

1.4.2 - FIN scanning

The FIN scan nethod uses inverse mapping to di scover closed ports.
Unfortunately, this techniques relies on bad BSD network code which nost

operating systens have based their TCP/IP stacks on (all the better for
scanning). ldeally, once a FIN fl agged packet is sent, a closed port will resend
with an RST bit. Open ports, alternatively wll not send a packet back

therefore what precisely is not answered with the FIN bit, is assuned to be open

Page:

12

NtWaK0 NtWaK0

t hrough this process of inverse mapping.

Take a | ook at the negotiation for open/closed port recognition displayed bel ow

client -> FIN
server -> -

No reply signaled by the server is iconic of an open port. The server's
operating systemsilently dropped the incomng FIN packet to the service running
on that port. Opposing this is the RST reply by the server upon a closed port
reached. Since, no service is bound on that port, issuing a FIN invokes a reset
(RST) response fromthe server.

client -> FIN
server -> RST

Arguably there are two ways to test for an open port. The first is receiving a
list of closed port responses and subtracting these port replies froma list of
the port probes originally sent. For exanple, sending 3 packets to ports 1, 2, 3
on a renote host.

If the response back is an RST for ports 1 and 3, we then conpare the origina
port list: 1, 2, 3 to the received ports: 1, 3 and deduce that 2 is the open
port via conparison.

The second test involves using a tineout for the packet response. If the tinmeout
limt is reached to receive the packet in question then we assune it to be open

Qbviously, this nmethod is test for false positives and should be avoided where
possi bl e. The responses for the packet could be obscured because of firewalls,
filters, routers, slow links, and heavy traffic, thus is not a solid test to be
used as a rule of thunb for stealth FIN scanning.

Page:

13

Advant ages . avoids many IDS, avoids TCP three-way handshake
Di sadvant ages: slow fal se positives

1.4.3 - ACK scanni ng

Uriel Mainon first described this technique in Phrack 49 article 15. Needless to
say this technique revolves around a bug in the IP layer of a few operating
syst ens.

In order to test for an open port using this nethod an initial ACK packet is
sent to the target host. There are actually two ways to classify the response
packet. The first involves an assessnent of the TTL field, the second is
analyzing the WNDOW field. Both of these fields should be obtained with the
response packet that has the RST bit set.

The reply should be a reset connection, that is, a packet with the RST bit set.
Acconpanying the RST flag, an analysis of the 1P header, for sonme operating
systens, will provide a TTL that is |lower than the other packets received froma
cl osed port. Evidently any TTL sent to an open port would reveal a TTL | ess than
or equal to 64, if the upper/lower ports have a higher TTL.

client -> ACK
server -> RST -> (TTL <= 64)

A real life response is show bel ow
packet 1: host XXX. XXX XXX. XXX port 20: F:RST -> ttl: 70 win: 0 => cl osed

packet 2: host XXX. XXX. XXX. XXX port 21: F:RST -> ttl: 70 win: 0 => cl osed
packet 3: host XXX. XXX XXX. XXX port 22: F:RST -> ttl: 40 win: 0O => open

Page:

14

NtWaK0 NtWaK0

packet 4: host XXX XXX. XXX. XXX port 23: F:RST -> ttl: 70 win: 0 => cl osed

Notice the TTL of the sequential packets before and after packet 3 is higher
than 64. As packet 3 is received it is observed that the TTL for port 22 is |less
than the boundary 64, indicating an open port.

Using the WNDOW field nmethod, any non-zero response packet received fromthe
server is indicative of an open port. This is true for several early BSD
(FreeBSD, OpenBSD) and UN X (Al X, DGUX) but has been patched/fixed in nore
recent versions.

client -> ACK
server -> RST -> W NDOW (non-zer 0)

A real life response is shown bel ow
packet 6: host XXX XXX. XXX. XXX port 20: F:RST -> ttl: 64 win: 0 => cl osed
packet 7: host XXX XXX. XXX. XXX port 21: F:RST -> ttl: 64 win: 0 => cl osed
packet 8: host XXX XXX. XXX. XXX port 22: F:RST -> ttl: 64 win: 512 => open
packet 9: host XXX XXX. XXX. XXX port 23: F:RST -> ttl: 64 win: 0 => cl osed

Notice that although the TTL equals 64, the surrounding packets do also. Thus
the TTL nmethod would not work on this host, however the WNDOW offset nethod
shows a non-zero val ue indicative of an open port.

Advant ages difficult to log, avoids IDS detection
Di sadvant ages: relies on BSD network code bug, OS incompatible

1.4.4 - NULL scanni ng

Page: 15

NtWaK0 NtWaK0

Clearly through it's endowed naned, the NULL scan unsets ALL flags available in
the TCP header. ACK, FIN, RST, SYN, URG PSH all becone unassigned. The reserved
bits (RES1, RES2) actually do not effect the result of any scan, whether or not
they are set clearly does not matter. On arrival of this packet to the server,
BSD networ king code inforns the kernel to drop the incomng call if the port is
open.

client -> NULL (no fl ags)
server -> -

Al ternatively, an RST packet will be returned if a closed port has been reached
(yes another inverse mapped scan).

client -> NULL (no fl ags)
server -> RST

Onng to the fact that the RFC does not exclaim exactly how a host should
respond to these types of packets, various network code for the mmjor operating
systems will differ in the packet responses, ie Mcrosoft vs UN X

Advant ages . avoids IDS, avoids TCP three-way handshake
Di sadvant ages: UN X only, false positives

1.4.5 - XMAS scanni ng

Contrastedly, a so called XMAS scan is the inverse of the NULL scan nethod. Al
the available flags in the TCP header are set (ASK, FIN, RST, SYN, URG PSH)
XMAS or "Christmas Tree" scanning is named rightly so after the decorative
effect the scan has with the flagging inplementation. The reserved bits do not

Page:

16

NtWaK0 NtWaK0

effect the scan result, so setting or unsetting is ofno inportance. Once again,
since this nethod is based on BSD networking code the technique will only work
agai nst UNI X hosts.

XMAS scanning works by initializing all the flags and transmtting this packet
to the renote host. The kernel will drop the packet if an open port is at the
receiving end. Areturned RST flag will reflect a closed, NON-LISTEN NG port
again this is an inverse mapped scan, so false positives is all a client has to
detect an open/cl osed port.

client -> XMAS (all flags)
server -> -

This signature tells us that the port is in LISTENING state, or the packet was
filtered by a firewall/router. Alternatively a closed port wll produce the
following reply:

client -> XMAS (all flags)
server -> RST

The RST woul d be sent to the client because the server is tricked into thinking
that the client has a connection on that port w thout negotiating with the
standard three-way handshake. Since TCP is stateful the kernel sends a reset bit
(RST) back to the client to end transnm ssion i nmedi ately.

Advant ages . avoids IDS, avoid TCP three-way handshake
Di sadvant ages: UN X only, false positives

1.4.6 - TCP Fragnenti ng

Page:

17

NtWaK0 NtWaK0

TCP fragnenting is not a scan nethod so to speak, although it enploys a nethod
to obscure scanning inplenentations by splitting the TCP header into smaller
fragments. | P reassenbly on the server-side can often |lead to unpredictable and
abnormal results (IP headers carrying data can be fragnented). Many hosts are
unable to parse and reassenble the tiny packets and thus may cause crashes,
reboots, or even network device nonitoring dunps. Alternatively, these tiny
packets may be potentially blocked by |IP fragnmentati on queues in the kernel or
caught by a stately firewall rul eset.

Since many intrusion detection systenms use signature-based nechanisns to signify
scanni ng attenpts based on I P and/or the TCP header, fragnentation is often able
to defeat this type of packet filtering and detection, and naturally the scan
wi ||l go undi scovered.

A mnimlly allowable fragmented TCP header must contain a destination and
source port for the first packet (8 octect, 64 bit), typically the initialized
flags in the next, allowing the renote host to reassenble the packet upon
arrival. The actual reassenbly is established through an IPM (internet protoco
nodul e) that identifies the fragmented packets by the field equivalent val ues

of :
* source
* destination
* protoco
* jdentification
Advant ages . avoids IDS, stealth

Di sadvant ages: may cause network problenms on renote host

1.5 M scel | aneous

This category represents scans that can not be entirely classified into the
br oader open/ hal f-open/stealth cl asses. The scans here are dissimlar in nature

Page: 18

NtWaK0 NtWaK0

but are techniques still used in the wild today.

1.5.1 - UDP | CMP_PORT_UNREACHABLE scanni ng

Unli ke the above scanning nethods, the User Datagram Protocol (UDP) is used to
determ ning open/closed ports on a renote host rather than TCP

UDP is a connectionless streamprotocol that sends datagrans as a neans of
packet transmission. Simlarly to the inverse mapping system sending a UDP
packet to an open port will receive no response froma server. However, a cl osed
port will respond with an Internet Control Message Protocol (ICWMP) error reply.
Using a process of extrapolation it is sinple to identify the open from cl osed
ports. The nessage type, | CMP_PORT_UNREACH (type 3 code 3), does not technically
need to be sent when a closed port received a UDP packet, hence the difficulty
with this scanning nethod. Additionally, UDP is known to be an unreliable

protocol since packets are easily dropped during transm ssion, hence
retransm ssion needs to take place, otherwise even nmore false positives are
assuned in the scan result. Linux kernels I|imt ICMP error nessage rates,

destination unreachable are set to 80 per 4 seconds with 1/4 second penalty if
that is exceeded, adding to the scanning technicality, as Fyodor pointed out.

An open port signature should send no reply, also a retransm tted packet is sent
to reduce fal se positives:

client -> udp packet
server -> -
client -> udp packet
server -> -

Cl osed ports will response with the |ICVP error

Page:

19

NtWaK0 NtWaK0

NtWaK0 NtWaK0

client -> udp packet
server -> UDP (| CVP_PORT_UNREACH)

Advant ages . scans non-TCP ports, avoids TCP |IDS
Di sadvant ages: requires root, packets easily dropped, easily detected

1.5.2 FTP server bounce attack

Thi s ingenious nethod was described in a paper by the hobbit. Using, the FTP
PORT command to set a clients passive node, a host is able to determ ne the
status of a port by issuing an I[P and port as arbitrary paraneters to connect
to. If a connection is established as a nmeans of active data transfer processing
(DTP), the client knows a port is open, with a 150 and 226 response issued by
the server. If the transfer fails a 425 error will be generated with a refused
buil d data nessage.

Early versions of WJFTPD (less than 16) were vulnerable to this type of attack
nowadays the presence of this bug has been patched in nopst FTPD s. O her
vul nerabl e versions include:

Sun FTP server in SunOS 4.1.x/5.x, SCO OpenServer 5.0.4, SCO UnixWare 2.1, AIX
3.2/4.2/4.2./4.3, Caldera 1.2, RedHat 4.X, Slackware 3.1 - 3.3.

An easy way to disallow this kind of attack is to prevent third party transfers
through nodification of the PORT conmand and/or disallow ng specification of
reserved ports, except port 20 the standard default data port.

Advant ages : bypass firewalls, allows access to | ocal nets, hard to trace
Di sadvant ages: slow, nost FTPD s have been patched

Page:

20

NtWaK0 NtWaK0

File: C \NtWKO\Tenp\portscan.txt 1/8/01, 6:43:51AM

1.6 Bl ocki ng packet anonalies

Isolating and filtering the packets used in all the above scans is one step
forward into securing any inter-network connected node. Any application of the
following rulesets will yield many port scanning techniques with false positive
i nformation, highlighting the well known "security through obscurity” objective.

bl ock unassigned port traffic (traffic to ports with unassi gned services)
application-layer nonitoring

deny pass-through traffic

nmoni tor transport-layer connections (control of TCP, SYN, RST, ACK)

nmoni tor source address matchi ng well known addresses

filter ICMP type 3 and 8

active network nonitoring

L R I T R

Many audi bl e scanni ng techni ques exist to gather information about the services
that exist on a host. However, none of these techniques will evade a wel
configured proxy along with an active systens anal yst to spot potential traffic
abnormalities.

Ref er ences

Art of portscanning by Fyodor - http://ww. phrack. com

Net wor ki ng Scanning by Ofir Afkin - http://ww. sys-security.com

FTP bounce attack by hobbit - http://ww. insecure. org/ nmap/ hobbit.ftpbounce.t xt
(C opyright 2001 by dethy@ynnergy. net Synner gy Networ ks

Page:

21

NtWaK0 NtWaK0

NtWaK0 NtWaK0

