
Detecting NUSHU Covert Channels Using Neural Networks

Eugene Tumoian
Maxim Anikeev

Taganrog State University of Radio Engineering
Department of Information Security

Lab. I-409, ul. Chekhova, 2, Taganrog, Russia
{tumoyan, anikeev}@users.tsure.ru

Abstract
A method of NUSHU covert channel detection based on
neural networks is described in the paper. The detec-
tion relies on ISN generation model of original OS. The
neural network learns to detect statistical deviations of
ISN network packet from the ISN model. We tested the
method using experimental data generated by NUSHU
covert channel creation tool, which are freely available on
invisiblethings.org.

1 Introduction
The general idea of covert channels relies on the idea that
information can be transferred in unused fields of net-
work protocols or it can change any non-critical data in
a network protocol. Many programs for creation of covert
channels are developed.

Loki2 [1] for Linux hides information in ICMP-packets
and in DNS requests and responses. Reverse WWW Shell
tool, developed by van Hauser [2] uses HTTP protocol.
Reverse WWW Shell server creates the reversed connec-
tion to a client; it periodically “pushes” command requests
and “pulls” the commands. Then the result of each com-
mand is pushed back. This method transfers data in the
packet data field and they can be discovered quite easily.
The use of non-critical fields of packets provides higher
secrecy. Such methods are described in [3] by Craig H.
Rowland. He developed Covert TCP tool which changes
IP identification, sequence number (SEQ#), and acknowl-
edgement number (ACK#) in IP and TCP service fields.

SEQ# field is a 32-bit field, which identifies packet
location in the TCP session, and denotes belonging to
a certain session. Whenever a TCP session is estab-
lished, SEQ# is initialized with an Initial Sequence Num-
ber (ISN) pseudorandom value and SEQ# value is be-
ing incremented with a certain value during the session.
ACK# value is used to support session uniqueness by an-
other workstation and it equals SEQ# of packets of this

workstation. It is also initialized with a random ISN value
during connection setting. ACK# matches SEQ# of an-
other workstation during data transmission and it is also
being incremented with a certain value [4]. Initial values
of SEQ# (ACK#) are not important. An attacker can use
this fact to transfer his/her information in the ISN value.

2 NUSHU, a proof-of-concept tool
for TCP/IP passive channel cre-
ation

NUSHU for Linux is one of the newest tools for covert
channel implementation developed by Joanna Rutkowska.
It is a proof-of-concept tool for Linux using 2.4 kernel. It
provides a passive covert channel (PCC), i.e. it does not
generate any additional traffic, but uses data of the existing
one. NUSHU was introduced on the Chaos Communica-
tion Congress in 2004. The comprehensive NUSHU de-
scription can be found in [5], NUSHU source code is also
available from http://invisiblethings.org. Here we shall fix
on some points, which are important for the detection of a
covert channel established by NUSHU.

NUSHU creates a covert channel in the following way.
Whenever a connection is established, the kernel gener-
ates ISNORIG and puts it into SEQ# of the sent packet
TCP header. NUSHU is a kernel module, that is why
it can change any information is the packet including
its header. NUSHU puts data, which are to be passed
to ISNCOV ERT , into SEQ# field. It must be noted
that ACK# should be replaced so that the original stack
could maintain connections changed by NUSHU. In or-
der to do this properly, NUSHU saves the value of ∆ =
(ISNCOV ERT −ISNORIG) and the packet is sent to the
network afterwards. Whenever a packet containing ACK#
to the packets sent earlier with the covert channel comes,
NUSHU calculates ACK#ORIG = ACK#COV ERT +
∆ and obtains original ACK#. Connection identification
is performed using sender address field, receiver address



field, sender port and receiver port. NUSHU implementa-
tion is shown on Fig. 1.

Data is encrypted before putting into a TCP packet. A
simple block version of Vernam algorithm with one-time
pad generated with DES is used.

Figure 1: NUSHU implementation overview (according
to [5])

Encryption is used only to make statistical character-
istics of SEQ# close to a pseudo random process. This
algorithm is too weak to provide secure transmission. The
procedure of such encryption is shown on 2.

Figure 2: Data coding before sending (according to [5])

On Fig. 2 TCP.sport and TCP.dport are the ports
of sender and receiver respectively, while IP.saddr and
IP.daddr are their IP addresses. The key icon indicates
a private key shared by the given copy of NUSHU and its
owner, who intends to read data, transferred by NUSHU.
That is a new key is created each time a session is estab-
lished.

In order to receive data sent by NUSHU, an intruder
should have an opportunity to intercept all the traffic

(or its major part) containing covert information. In [5]
Joanna Rutkowska offers the following schemes of apply-
ing NUSHU:

1. A compromised workstation is connected to the In-
ternet through a gateway controlled by the attacker.
The compromised workstation initiates most of the
connections (SYN-packets). In this case NUSHU
puts data into SYN# of the first packet. This scheme
is shown on Fig. 3.

2. A compromised server is connected to the Internet
via a compromised gateway. Connections are initi-
ated by the clients of this server. In this case NUSHU
puts data into the SYN# of the second packet of the
session (SYN-ACK packet). This scheme is shown
on Fig. 4.

Figure 3: NUSHU working on a compromised worksta-
tion (according to [5])

Figure 4: NUSHU working on a compromised server (ac-
cording to [5])

3 Covert channel detection
Joanna Rutkowska points out that there are some pos-

Page 2



sibilities to discover a passive covert channel from host
side, e.g. using Tripwire. Theoretically, the detection of
a covert channel on the network layer is more complex.
Fig. 5 depicts a typical situation of a passive covert chan-
nel detection. The sensor intercepts all the traffic of the
current segment and determines the presence of a hidden
channel. During the detection, it is necessary to build a
classifier, which separates normal ISN from those gener-
ated by NUSHU.

Decision rule construction is possible only having the
following facts taken into account. In most operating sys-
tems the kernel generates ISN using a complex function,
which depends on the current time and the previous ISN
value.

We offer the following way of covert channel detection.
We construct a model of ISN generation using experimen-
tal ISN data of the original stack that allows prediction
of the successive ISN value based on the preceding ones.
There are many possibilities of building an ISN generation
model, e.g. examination of the ISN generation algorithm
of the operating system and an attempt to reproduce them.
However we consider that the use of neural networks is
the most promising approach.

Figure 5: Detection scheme

A neural network is able to create a model using ex-
perimental data without any information about the data
generation algorithm, which is a serious benefit. Neural
network architectures and training methods are described
in [6] for instance; we shall emphasize several basic ideas
only:

• Neural networks can generalize (i.e. they can output
the correct result using data which is similar to the
ones used in the training set) and correct mistakes
(i.e. they output the correct result if input data is cor-
rupted or incomplete). The neural network obtains
these properties during training.

• Neural network training is an iterative process with
random initial parameters. The duration of this pro-

cess depends on the training set and it can last quite
long.

So the detection system should build an ISN generation
model, in fact the system must be trained to recognize the
presence of a hidden channel. In order to achieve this,
ISNs generated by the standard stack are collected to form
a training set.

Then the following table is constructed using collected
data: Pi = ISNi, Ti = ISNi+1, i = N − 1, where N
is the quantity of collected normal ISN. Then the neural
network is trained to reproduce the following mapping:
F : Pi

F

→
Ti, ∀i. We used Elman neural network for our

experiments. This network predicts the successive ISN us-
ing all the data received before. Neural network training
is shown on Fig. 6. Besides that, we calculate similarity
threshold during training. Whenever this threshold is ex-
ceeded, we consider that the tested packets do not match
the normal stack model. Threshold calculation method is
not detailed here.

Figure 6: Neural network training

Whenever the training is completed, SYN-ACK-
packets are being intercepted in the controlled network
(other packets are not needed). The neural network tries
to predict the successive ISN. As soon as the current ISN
is also intercepted, it can be compared with the predicted
value. Similarity measure between the two values charac-
terizes how well the network data matches the constructed
model.

Page 3



If the difference is higher than the chosen threshold, we
consider that the ISN was not generated by the original
stack. Hamming distance between the two binary num-
bers is chosen as a similarity measure. This process is
shown on Fig. 7.

Figure 7: Similarity measure calculation

It must be noted that workstations with different oper-
ating systems can present in the same network. As soon
as different parameter values are used for ISN generation
by different TCP/IP stack implementations, we can state
that ISN generation models should differ greatly from one
operating system to another. In order to take these differ-
ence into consideration, ISN model for several (five in our
experiments) operating systems is created (Fig. 8). Test-
ing was done for all the stacks and the model is found for
which the prediction error is minimal. Then we check if
this error exceeds the threshold.

Unfortunately, it is impossible to detect a covert chan-
nel using a single SYN-ACK-packet. That is, the pro-
cess shown on Fig. 8 is repeated several times for sev-
eral sniffed packets. Similarity measure is calculated with
each two consecutive packets. The more packets we try
to predict, the more precise is the estimation of similarity
measure of actual ISNs and their model.

4 Experimental results
In order to check the proposed concept we used the data
introduced by Joanna Rutkowska as well as data collected
from our computer network. The testing data are TCP-

Figure 8: Passive covert channel detection

Dump logs containing SYN-ACK-packets. During exper-
iments we use SYN-ACK-packets of the original Red Hat
9, original Fedora Core 2 and Red Hat 9 with installed
NUSHU (taken from http://invisiblethings.org); the data
collected by us includes Fedora Core 3, Windows 2000
SP4, Windows XP SP1, and Windows XP SP2 SYN-
ACK-packets. Here is a record example:
18:11:32.624303 172.16.7.10.1025

> local-172-16-0-1.ttn.16131: S
130110378 :130110378(0) win 5840 <mss
1460,sackOK,timestamp 5603914 0,nop,
wscale 0> (DF)

Only SEQ# value is needed for the experiments
(marked bold). Logs contain 20,000 records of each type.
We used only 1,500 records for neural network training;
remaining data were used for testing.

During model generation stage we read all the 1,500
values for each operating system and then we use Math-
works Matlab 6.5 R13 script to create and train the neural
network. Elman recurrent network was chosen because
we suppose that in order to predict a successive ISN value,
information about all the preceding ones is needed. Each
neural network is saved into its own file after training.

On monitoring stage we use Matlab script which reads
packets from a WinDump log (or any other specified file)
one by one. It is needed for online network monitoring.
Fig. 9a shows output monitoring-script for original Fe-
dora 2, Fig. 9b shows output monitoring-script for original
Windows 2000 SP4, and Fig. 9c shows output monitoring-
script for Fedora with NUSHU.

On Fig. 9 the first column (IP) contains source IP-
addresses of the monitored packets; the second one
(STACK) is a predicted stack; the third one is a predic-
tion error (0 .. 32); and the last one denotes the numbers
of tested packets from the same IP-addresses. A short re-
view of script creation is denoted in Table 1.

Page 4



a)

b)

c)

Figure 9: Monitoring script output: a) original Fedora
Core 2.0; b) original Windows 2000 SP4; c) NUSHU
covert channel

Elman network Number of Creation
size epochs time, s
30x32 1000 8 − 10
40x32 1000 15− 20
50x32 1000 20− 30
100x32 1000 40− 60

Table 1: Model creation (using PC AMD Athlon XP
1800+, RAM 512)

Table 2 summarizes testing results.

Elman net-
work size

False
channel
detection

False chan-
nel missing

OS detec-
tion error 1

30x32 < 0.1% 5% < 1%
40x32 < 0.2% 7% < 2%
50x32 < 0.2% 8% < 3%
100x32 < 0.5% 10% < 4%

Table 2: Monitoring script accuracy

Monitoring script performance allows to implement on-
line monitoring of 10 Mbit network with 50% bandwidth
traffic. Table 3 summarizes testing results for the optimal
Elman network size (30x32).

As mentioned above, if the quantity of ISN is small,
we cannot guarantee accuracy of the decision. If ISN is
smaller than 3, the system cannot detect the stack. Ac-
cording to our experiments, the probability of NUSHU
detection for Windows XP SP2 reaches 60%. This fact
occurs because the ISN generation mechanism of this OS
is very close to uniform random distribution and thus it
resembles NUSHU generation method. Monitoring script
performance allows monitoring a 10Mbit network with
50% bandwidth traffic online.

1The results are shown for four operating systems only, namely Red
Hat 9, Fedora Core 3, Windows 2000 SP4, Windows XP SP1. Windows
XP SP2 is not taken into account.

Quantity of
ISN

< 3 < 50 < 100 > 100

False channel
detection

50% 5% 0.1% < 0.1%

False channel
missing

50%url 8% 6% 5%

OS detection
error 1

50% 5% 1% < 1%

Table 3: Dependence of recognition accuracy on the quan-
tity of ISNs in the training set

5 Discussion
Experiments demonstrate that our method allows to detect
a passive covert channel with high precision. Besides that,
the method can automatically create ISN generation mod-
els for any operating system (it is not necessary to know
how the OS creates ISNs). Another useful side effect of
the model is the ability to determine an operating system
working in a network.

The following strategy of applying our method is pos-
sible. One should install a sensor (e.g. a computer with
WinDump running on it) so that it could have a chance
to intercept all the connection of the controlled network.
Our detector should receive logs of the sensor (or several
sensors). The system can be trained when network load is
minimal (e.g. at nighttime). Retraining is recommended
to be done regularly to maintain the system up-to-date in
case any new operating systems or patches are installed (if
they change the ISN generation principle).

The most important problem for further research is the
detection of covert channels with acyclic connection es-
tablishment. It is known that many operating systems
generate ISN depending on the current time that is on the
interval between the current connection and the previous
one. At the moment we used data of both original and
compromised machines, which had established connec-
tions regularly after a very short period each time. We do
not know how the proposed method works with irregular
connections.

Beside that, our further research will include the de-
velopment of covert channel detection program. Now we
use standard TCPDump and a Matlab script, which is less
productive than a software product. The development of a
program, which captures packets and detects covert chan-
nels itself should increase the overall performance.

6 Acknowledgments
The authors (and the rest of the I-409 Labs) would like
to express their thanks to Joanna Rutkowska for helpful
contributions.

Page 5



References
[1] Daemon9. LOKI2 implementation. Phrack

Magazine, 7, September 1997. Available:
http://www.phrack.org/show.php?p=51&a=6.

[2] van Hauser. Placing backdoors through firewalls.
Available: http://www.thc.org/papers/fw-backd.htm.

[3] Craig H. Rowland. Covert channels in
the TCP/IP protocol suite. Available:
http://firstmonday.org/issues/issue2 5/rowland/index.html.

[4] RFC793: Transmission control protocol. Available:
http://www.rfc.net/rfc793.html.

[5] Joanna Rutkowska. The implementation of pas-
sive covert channels in the Linux kernel. Available:
http://invisiblethings.org/papers.html.

[6] Simon Haykin. Neural Networks. A Comprehensive
Foundation. Prentice Hall, New Jersey, USA, 2nd edi-
tion, 1999.

Page 6


