
MAC Address Cloning
kingpin@l0pht.com

12.25.98

What’s the point?

At one time or another, you may find it necessary to have two machines with the same physical network address.
This could be for a number of reasons: testing of your internal network or software, attempting network snooping or
spoofing, bypassing computer software security that relies on this address or just plain curiosity. Whatever the
reason, what follows is how it’s done.

Each computer attached to an Ethernet is assigned a unique 48-bit (6-byte) integer, known as an Ethernet or MAC
(Media Access Control) address. Ethernet NIC (Network Interface Card) hardware manufacturers purchase blocks
of Ethernet addresses from the IEEE (Institute for Electrical and Electronic Engineers) and assign them in sequence
to their cards.1 The IEEE global address ranges are assigned and registered by IEEE to individual companies
requesting them. Every company is responsible for ensuring that every manufactured unit gets a unique address
within its assigned range of addresses.2 Thus, no two cards will purposely have the same address. The first 3-bytes
of the address are used to identify the manufacturer of the NIC. The last 3-bytes are the unique serial number. A list
of vendor codes can be found at http://MAP-NE.dragonfire.net/Ethernet/vendor.html.

In almost any available NIC, the MAC address is stored in semiconductor-based memory containing one or more of
the following:

• MAC Address
• I/O Base Address
• Interrupt
• Interface Type (10BaseT, AUI, 10Base2)
• Checksum
• Other configuration/initialization information

The earlier cards used a now obsolete 82S123 or 74S288 one-time programmable 256-bit device. These devices
were large (16-pin through-hole), costly and difficult to program.

Almost all of today’s NICs use a Serial EEPROM3 (Electrically Erasable Programmable Read-Only Memory) to
store this information. Often socketed, but usually soldered to the board, these devices use a three-wire interface,
known as Microwire, to transfer its contents. The EEPROMs are programmed during card manufacture and placed
onto the board. In some cases, the Serial EEPROM is programmed directly from the Ethernet controller IC, so that
the MAC address and other configuration information can be entered via PC software. The beauty of these devices is
that they can be erased and written up to 1 million times without error. Due to the limited amount of memory
required, these devices often have only 256-bit (93C06) or 1024-bit (93C46) capacity. Our work concentrates on
modifying the contents of this Serial EEPROM to change the necessary MAC address and Checksum data.

The heart of a NIC is an “Ethernet Interface” or “Ethernet Controller” IC. This device handles the necessary
interfacing between the Ethernet and PC bus. This chip really “runs the show”, as the other components on the NIC
are usually just interface/glue logic. There are many different manufacturers of Ethernet controllers. Our cards used
a National Semiconductor DP83905-EB AT/LANTIC4, which interfaces to an ISA bus. Other devices include
Realtek RTL8129 and RTL8029 Fast Ethernet Controller5 designed for interface to a PCI bus, the Standard

1 Internetworking with TCP/IP, Vol. 1, Douglas Comer, pg. 25, ISBN 0-13-468505-9
2 SMSC LAN-9000 FAQ, http://www.smsc.com/main/appnotes/tn76.html
3 Basic Serial EEPROM Operation, http://www.microchip.com/Download/Appnote/Category/EEPROMS/00536.pdf
4 DP83905EB-AT AT/LANTIC Hardware User's Guide, http://www.national.com/an/AN/AN-897.pdf
5 RTL8129 Preliminary Data Sheet, http://www.realtek.com.tw/cn/NEW/doc/RTL8129-new.htm

Microsystems LAN9000-family6 and the UMC UM9003. In most cases, this Ethernet controller interfaces directly
with a Serial EEPROM to store its re-programmable data.

This paper is based on PC-based NICs using the AT/LANTIC device, which emulates the extremely common
Novell NE2000 Plus card. Our initial research was performed before we came upon the AT/LANTIC data sheet, but
the results match closely and helped us verify the contents of the EEPROM.

How do I find out what my MAC address is?

Frequently, the MAC address of the NIC is printed on a label and stuck to the card itself. If the card you want to
clone isn’t accessible, you’ll probably want a non-intrusive method of obtaining the address. Depending on the
particular flavor of your operating system, the method of finding your MAC address varies7.

What’s on the Serial EEPROM?

Our initial experiments consisted of simply reading data from the Serial EEPROM on a number of different NICs.
By doing so, we tried to see the likeness and difference between them, and verified the storage of the MAC address.
We could easily have determined this by looking at the data sheet for the Ethernet controller IC, but keep in mind
that we didn’t have one at this stage of the experiment. Table 1 shows the comparison.

Table 1 – NIC Serial EEPROM comparison

Manufacturer Model EEPROM MAC Address Data
National Semiconductor NSC ? 93LC06 08:00:17:03:C0:E5 0008 0317 E5C0 0000 0500 010D 01DA 5757

4242 0000 0000 0000 0000 0000 0020 0020
Ansel Communications N2000 Plus 3 93C46 00:40:90:80:07:7E 4000 8090 7E07 FFFF FFFF FFFF FFFF 5757

4242 FFFF FFFF FFFF FFFF FFFF 0100 FF20
Microdyne NE2000 Plus 3 93C06 00:80:29:E7:C2:9C N/A
Linksys Ether16 93C46 00:40:05:44:17:A7 4000 4405 A717 0108 020A 5464 00D8 0000

0000 0000 0000 0000 0000 0000 0000 0000
Genius GE2000 II 93C46 00:40:33:2A:82:82 4000 2A33 8283 5805 0000 0000 0000 5757

4242 0000 0000 0000 0000 0000 2100 0020
Winbond HT-2003CT 93C46 48:54:33:01:48:24 5448 0133 2448 0000 5448 0133 2448 5757

4242 0000 0000 0000 0000 0000 4040 0020

Looking at the table, it’s easy to determine where and how the MAC address is stored. The nibbles are reversed, but
the MAC address consists of bytes 0-5. A common trait to most of the data is the 5757 4242 string at byte 15.

For the NICs using a 93C46 EEPROM, the 32-bytes of data were either repeated four times (to fill the 128-bytes of
capacity) or just filled with 0x00. The amount of data stored in the EEPROM is dependent on the Ethernet controller
IC. Many new controllers are designed to interface to a 93C46 only. The migration to the 93C46 was due to the
availability and production status of the 93C06, which has been phased out.

If you haven’t noticed, the data is missing from the Microdyne NE2000 NIC. This was the first card I attempted to
read and, due to the excitement, I wrote over the existing data right after I read it. As you laugh, remember that the
Serial EEPROM devices are re-programmable, so take caution as you handle the card. By looking at the data from
the other cards and knowing the MAC address, we can assume that the first 3 words of the device will be: 8000
E729 9CC2.

That’s easy. What else?

So we know that the MAC address is stored in the EEPROM. We also know that there is a 5757 4242 string
common to some of the devices. There is some other data that varies between the devices. Now what do we do?

Behold! This is where the AT/LANTIC data sheet comes into play. Section 1.3 “EEPROM Programming” of the
AT/LANTIC data sheet and Table 2 describes the memory map of the Serial EEPROM.

6 LAN9000 Product Datasheets, http://www.smsc.com/main/datasheet.html
7 How to find your MAC address, http://www-dcg.fnal.gov/DCG-Docs/mac/

Table 2 – AT/LANTIC Serial EEPROM Memory Map

Addr Bits 15-8 Bits 7-0
00 MAC Address 1 MAC Address 0
01 MAC Address 3 MAC Address 2
02 MAC Address 5 MAC Address 4
03 Checksum 05 (8013 type)
04 00 (Not Used) 00 (Not Used)
05 00 (Not Used) 00 (Not Used)
06 00 (Not Used) 00 (Not Used)
07 57 (ASCII “W”) 57 (ASCII “W”)
08 42 (ASCII “B”) 42 (ASCII “B”)
09 00 (Not Used) 00 (Not Used)
0A 00 (Not Used) 00 (Not Used)
0B 00 (Not Used) 00 (Not Used)
0C 00 (Not Used) 00 (Not Used)
0D 00 (Not Used) 00 (Not Used)
0E Config B Config A
0F 73 (For future use) Config C

On most NICs, the Serial EEPROM can be used to implement a jumper-less solution. The EEPROM will store all
necessary configuration and initialization information, including I/O address and interrupts, replacing the need to set
physical jumpers. A NIC with a jumper-less configuration requires the use of the Config A, B and C bytes. Section
1.1.9 “Configuration” of the AT/LANTIC data sheet explains this in detail. Although these bits don’t need to be
modified to clone the MAC address, for inquiring minds, Table 3 shows what the bit fields represent.

Table 3 – AT/LANTIC Configuration bits

Config A: Config B: Config C:

Bit Use Bit Use Bit Use
0 I/O Address 0 AUI/Coax/TPI 0 Boot PROM Address & Size
1 I/O Address 1 AUI/Coax/TPI 1 Boot PROM Address & Size
2 I/O Address 2 Good Link Test Disable 2 Boot PROM Address & Size
3 Interrupt 3 IO16 Bug Fix Enable 3 Boot PROM Address & Size
4 Interrupt 4 IO CHRDY Bug Fix Enable 4 RAM Size 8k or 32k
5 Interrupt (if 8 selected) 5 - 5 4 or 8 Interrupts
6 Fast read 6 Boot PROM Write Enable 6 Core CLK = 20MHz or BSCLK
7 NE2000/Shared Memory 7 - 7 Allow access to configure registers

Let’s compare.

Using the fifth entry from Table 1, the Genius GE2000 II, let’s compare our obtained data with the expected data
from Table 2. By doing this, we should be able to match up byte for byte the information in the Serial EEPROM,
and determine what needs to be programmed to change the MAC address. By now, it should be obvious that the
only thing that needs to be changed in the Serial EEPROM is the MAC Address and Checksum, but we’ll do this
exercise just for fun.

Table 4 – Breakdown of Genius GE2000 II data by byte

Location 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Data 40 00 2A 33 82 83 58 05 00 00 00 00 00 00 57 57

Location 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Data 42 42 00 00 00 00 00 00 00 00 00 00 21 00 00 20

As we already know, the first 6 bytes (location 0-5) are the MAC address.

The next byte (location 6) is the Checksum. The Checksum is calculated so that the least significant byte of the sum
of the first 8 bytes in the EEPROM is 0xFF. In this case, it’s 0x58. Let’s verify:

0x40 + 0x00 + 0x2A + 0x33 + 0x82 + 0x83 + 0x05 + Checksum (0x58) & 0xFF = 0xFF

All the bytes match up through location 27. Three of the remaining bytes consist of the configuration bytes, which
will vary from card to card.

Config A (Location 29) = 0x00
Config B (Location 28) = 0x21
Config C (Location 31) = 0x20

Location 30 is specified to have a 0x73 written to it. All the cards we’ve looked at had either 0x00 or 0xFF. This
byte is said to be used for future expansion of features on the AT/LANTIC chip.

Serial EEPROM Programming

To change the MAC address of a NIC card, you’ll need to reprogram the Serial EEPROM to reflect a new MAC
address and Checksum byte, at minimum. Most any off-the-shelf device programmer can handle Serial EEPROMs
and there are a handful of simple Parallel Port and RS232 programmers available, as well. Simply find the data sheet
for the particular Ethernet controller IC on your NIC, and work from there.

Microchip produces a “Serial EEPROM Designers Kit”, which I highly recommend for purposes of this experiment.
The kit is a serial-port based programmer, which includes a “Windows and DOS development system that programs
all of Microchip’s Serial EEPROM memories, including Microwire, I2C and SPI protocols.”8 The necessary
software and manuals are offered free-of-charge on the web9. Contact Microchip directly for product pricing and
availability.

If you want a more robust device programmer, for use with other projects, there are quite a available on the market.
Most of these are focused on microprocessor and larger memory device programming, but they all offer support for
Serial EEPROMs. Table 5 consists of reliable and (sometimes) low-cost programmers, based on personal
experience.

Table 5 – Commercial-grade device programmer resources

Manufacturer Web Page Model Number
BP Microsystems http://www.bpmicro.com Any, BP-1148, BP-1200
Data I/O http://www.dataio.com Any, ChipWriter Portable
M2L Electronics http://www.m2l.com EZ-EP

If you feel the need to “roll your own” programmer, keep reading. Interface to a Serial EEPROM requires a minimal
amount of connections. Figure 1 shows the pinout for an 8-pin DIP Microchip 93C46 device10. The data sheet digs a
little deeper.

8 Serial EEPROM Designers Kit Overview, http://www.microchip.com/10/Tools/memory/serial/index.htm
9 http://www.microchip.com/Download/Tools/Memory/Serial/evlsetup.zip
10 93LC46 64 x 16 Serial EEPROM Data Sheet, http://www.microchip.com/Download/Lit/Memory/Micro/21173e.pdf

Figure 1 – Typical pinout for Serial EEPROM (DIP package)

The device consists of three input lines: Chip Select (CS), Clock (CLK) and Data In (DI), and one output line: Data
Out (DO). All necessary timing diagrams are described in detail in the device data sheet and application notes.

Table 6 – Homebrew device programmer resources

Title Web Page
Microchip Serial EEPROM Application Notes http://www.microchip.com/10/Appnote/Category/EEPROMS/index.htm
Parallel Port - Programming Serial EEPROM http://www.phanderson.com/printer/eeprom/eeprom.html

All of our NICs, with the exception of one, had the Serial EEPROM soldered to the board. I would suggest
removing the device and replacing it with a DIP socket of some type, to allow easy removal later on. De-soldering
the chip from the board can be easy with the right tools, and not so easy with the wrong ones. Be careful not to crack
pins or de-laminate the PCB by excessive heating. I have not had luck programming these devices “in-circuit”, so
removal is necessary.

Do any non-hardware solutions exist?

There are a few possibilities for modifying the MAC address without mucking with the hardware. Using SunOS, for
example, the settings can be changed via the ifconfig (lM) command. On SPARCs, you can set it in NVRAM using
the prom-monitor.

As discussed earlier, there is other information being reprogrammed into the Serial EEPROM directly from the
Ethernet controller IC (via some host-based software) for use in a jumperless configuration. Because of this, there is
no reason that the MAC address can’t be reprogrammed from the host-based software, as well. For you software
folks, it might be an interesting task to reverse engineer the setup/configuration software that comes with your
jumperless NIC and hack it to reprogram the MAC address (if it doesn’t, already).

I want more information!

Oh.

-kp

