
Execution path timing analysis of UNIX daemons

Sebastian Krahmerkrahmer@suse.de

April 15, 2002

Abstract

Much effort has been taken over the years to give attackers as less information as
possible when they map vulnerabillities. This includes the list of users which have ac-
cess to particular machines or networks. For this reason even if remote access systems
detect invalid usernames they continue the authentication process to not reveal the in-
formation to the attacker that he just issued an invalid login. This paper describes how
one may get around these restrictions and still obtains valid usernames.

1 Introduction

Timing analysis has been done against a lot of things such as asymetric crypto systems
[timing] , SSH traffic [Openwall] or against chipcards. Timing of execution paths in certain
UNIX daemons or libraries has not been done or at least I am not aware of it. When
attackers do timing analysis they hope to gather important information such as whether
certain parts of supplied passwords are correct or, in our case, whether supplied usernames
are correct. As much as low level CPU skills are needed for timing or power-analyzing
chipcards we need programming and auditing skills to time execution paths of daemons or
parts of programs and libraries. I ran across this problem when tracking down some strange
SIGSEGVin a login program which turned out to use PAM in a wrong way. During the
audit a vague idea was born and it turned out to be a very useful idea and hard to protect
against, as the following sections describe.

2 Execution path analysis

Programs are deterministic automats which return the same result when fed with the same
input. They also should take about the same time to compute their result when they are
running in the same environment. Programs of our interest are authentication services such
as PAM or SSH. For such programs there are following classes of logins:

• valid login
User is allowed to login. If i.e. a password is supplied correctly, the shell is executed.

• valid login with restrictions
The user exists but is not allowed to log in. For example because his account expired
or he is listed in a deny-file.

• invalid login
The user does not exist but he is still prompted for a password. This does not show
the attacker that an account name is invalid.

• special login
Administrator accounts e.g. root. Special actions are taken to ensure the login comes
over a secure terminal etc.

1

2 EXECUTION PATH ANALYSIS 2

The daemon handling the request executes different flows of control when handling the
input, regarding to which class of login the username belongs. Additional syslogging for
example may take place for invalid usernames. In surprisingly lot of cases we are able
to distinguish between all four cases e.g. we can say to which class of login an arbitrary
choosen username belongs by contacting the service remotely and measuring particular
request/reply pairs. If we are not able to distinguish between all four cases we are often
still able to distinguish between valid and invalid logins, which in most cases is important
information for us. Other things attackers may get to know include knowledge about dis-
tributed authentication (NIS+ etc.), syslogging, or in case of some SSH implementations,
whether users have an authorizedkeys file. The worst case that may happen to a service is,
that attackers are able to reconstruct the complete execution path e.g. which if() conditions
have been triggered and how often certain loops have been executed.

2.1 The first real example: PAM

It is now time to look at a small example and explain why execution path analysis is im-
portant. The Pluggable Authentication Modules (PAM) are a framework to make authenti-
cation on UNIX systems as modular and flexible as possible. Almost all newer systems are
PAMified and there are almost no services which do not use PAM. Today, if you contact an
FTP, TELNET or SSH server, you can be sure that PAM handles the authentication process.

The following program is an example of using PAM. It uses the same authentication
methods as theftpdwould use it, which probably uses thepamunixmodule1.

1 #include <stdio.h>
2 #include <security/pam_appl.h>
3 #include <security/pam_misc.h>

4 struct pam_conv pc = { misc_conv, NULL};

5 int main()
6 {
7 pam_handle_t *ph;
8 int ret;
9 char buf[100] = "", *nl;

10 printf("PAM server 1.0 ready\r\n\r\n");
11 fflush(stdout);

12 fgets(buf, sizeof(buf)-1, stdin);

13 if ((nl = strchr(buf, ’\n’)))
14 *nl = 0;

15 ret = pam_start("ftp", buf, &pc, &ph);
16 if (ret != PAM_SUCCESS) {
17 printf("No!\n");
18 return 1;
19 }
20 pam_fail_delay(ph, 2000000);
21
22 if (pam_authenticate(ph, 0) == PAM_SUCCESS)

1pamunixdoes the standard password authentication known from UNIX

2 EXECUTION PATH ANALYSIS 3

23 printf("Yep!\n");
24 else
25 printf("No!\n");

26 return 0;
27 }

To protect against timing analysis, PAM offers a special function:pam fail delay() .
As we will see later,pam fail delay() fails to protect PAM against timing attacks, at
least when attackers want to obtain valid usernames.

Within the PAM framework, thepamunix module offers an authentication function
which actually does the authentication job. In this function theunix blankpasswd()
function is called for the supplied username.

...
1 /* if this user does not have a password... */

2 if (_unix_blankpasswd(ctrl, name)) {
3 D(("user ’%s’ has blank passwd", name));
4 name = NULL;
5 retval = PAM_SUCCESS;
6 AUTH_RETURN
7 }
8 /* get this user’s authentication token */
...

This function tries to obtain a passwd structure for this user with thegetpwnam()
libc-function as seen in line 16. At line 17 it breaks, because now we have two possible
execution-paths. The user may exist or it does not. If the user exists, additional code is
executed. That includes using the shadow-system, dropping and regaining privileges and
so on. This is measurable even if these few functioncalls seem to be too fast at first. It
turned out that inpamunix module for valid users about a dozen of additional syscalls are
made plus a couple of calls to thestrdup() andmemcpy() functions. This is enough
to decide between valid and invalid loginnames.

Of course you may have bad luck and the more on code you executed is lost 100 lines
later because the other case is triggering similar conditions. This however should be very
rare because it is unlikely that all classes of input take about the same time to be executed.

1 int _unix_blankpasswd(unsigned int ctrl, const char *name)
2 {
3 struct passwd *pwd = NULL;
4 struct spwd *spwdent = NULL;
5 char *salt = NULL;
6 int retval;

7 D(("called"));

8 /*
9 * This function does not have to be too smart if something goes

10 * wrong, return FALSE and let this case to be treated somewhere
11 * else (CG)

2 EXECUTION PATH ANALYSIS 4

12 */

13 if (on(UNIX__NONULL, ctrl))
14 return 0; /* will fail but don’t let on yet */

15 /* UNIX passwords area */
16 pwd = getpwnam(name); /* Get password file entry... */

17 if (pwd != NULL) {
18 if (strcmp(pwd->pw_passwd, "*NP*") == 0)
19 { /* NIS+ */
20 uid_t save_euid, save_uid;
21
22 save_euid = geteuid();
23 save_uid = getuid();
24 if (save_uid == pwd->pw_uid)
25 setreuid(save_euid, save_uid);
26 else {
27 setreuid(0, -1);
28 if (setreuid(-1, pwd->pw_uid) == -1) {
29 setreuid(-1, 0);
30 setreuid(0, -1);
31 if(setreuid(-1, pwd->pw_uid) == -1)
32 /* Will fail elsewhere. */
33 return 0;
34 }
35 }
36
37 spwdent = getspnam(name);
38 if (save_uid == pwd->pw_uid)
39 setreuid(save_uid, save_euid);
40 else {
41 if (setreuid(-1, 0) == -1)
42 setreuid(save_uid, -1);
43 setreuid(-1, save_euid);
44 }
45 } else if (strcmp(pwd->pw_passwd, "x") == 0) {
46 /*
47 * ...and shadow password file entry for this user,
48 * if shadowing is enabled
49 */
50 spwdent = getspnam(name);
51 }
52 if (spwdent)
53 salt = x_strdup(spwdent->sp_pwdp);
54 else
55 salt = x_strdup(pwd->pw_passwd);
56 }
57 /* Does this user have a password? */
58 if (salt == NULL) {
59 retval = 0;
60 } else {
61 if (strlen(salt) == 0)
62 retval = 1;

2 EXECUTION PATH ANALYSIS 5

63 else
64 retval = 0;
65 }

66 /* tidy up */

67 if (salt)
68 _pam_delete(salt);

69 return retval;
70 }

A small test-program which counts how often it is callingread() on the nonblocking
socket before getting the password prompt suffices to show good results against the PAM
server running viainetd.

lydia:root # ./a.out lp liane
[747 809 739 749 739 742 739 745 739 750]
-> 749.800000
lydia:root # ./a.out yard liane
[751 740 739 739 740 741 741 738 738 745]
-> 741.200000
lydia:root # ./a.out stealth liane
[713 716 716 717 716 720 718 719 717 719]
-> 717.100000
lydia:root # ./a.out invalid liane
[695 698 694 694 697 694 697 693 694 695]
-> 695.100000
lydia:root # ./a.out invalid2 liane
[693 692 695 694 694 692 692 694 693 756]
-> 699.500000
lydia:root #

The program counts the ticks2 ten times and computes the average of these. The first
two userslp andyard are special valid users listed in/etc/ftpusers 3, which causes
thepamlistfile 4 module to execute additional code i.e. syslogging.stealthis just a normal
login, and the last two are invalid. The timing was done against a 350 Mhz PII chip having
a normal Linux setup and a 10Mbit ethernet connection to the timing computer which has
a Pentium chip with 90Mhz. As said before we are able to distinguish between the classes
of logins. The largest amount of code is executed for valid restricted logins, and much less
code for inavlid logins. The reason for this was shown above in the code snipped from the
pamunix module. Tracing the syscalls of the PAM-server shows that it indeed executes
dozens of syscalls more in valid login-cases than in invalid login-cases.

As already noted PAM offers thepam fail delay() function to protect against the
attack which just succeeded. From the manpage:

[...]

It is often possible to attack an authentication scheme by

2number of calls toread() until reply is read
3therefore are not allowed to login viaftpd
4FTP also usespamlistfile to lookup deny-files

2 EXECUTION PATH ANALYSIS 6

exploiting the time it takes the scheme to deny access to
an applicant user.
[...]

To minimize the effectiveness of such attacks, it is
desirable to introduce a random delay in a failed authen
tication process. Linux-PAM provides such a facility.
The delay occurs upon failure of the pam_authenticate(3)
and pam_chauthtok(3) functions. It occurs after all
authentication modules have been called, but before con
trol is returned to the service application.
[...]

The problem is that the delay only comes to play after all authentication modules have
been passed. We however measured the time it took for the PAM conversation function5

to reply with the ”Password: ” prompt after PAM was passed a username. This shows that
thepam fail delay() function is useless.

2.2 A second example: OpenSSH

The same weakness which exists in PAM can be found too in OpenSSH up to the newest
6 versions. One example for different execution paths is at line 22. Only if the user exists
allowed user() is called7. The called function obtains structs from the shadow file
and checks whether the shell for this user is valid. OpenSSH sets a ’valid’ flag in the
Authctxt structure which allows later code to distinguish between valid and invalid
users.

1 void
2 input_userauth_request(int type, int plen, void *ctxt)
3 {
4 Authctxt *authctxt = ctxt;
5 Authmethod *m = NULL;
6 char *user, *service, *method, *style = NULL;
7 int authenticated = 0;

8 if (authctxt == NULL)
9 fatal("input_userauth_request: no authctxt");

10 user = packet_get_string(NULL);
11 service = packet_get_string(NULL);
12 method = packet_get_string(NULL);
13 debug("userauth-request for user %s service %s method %s", user, service, method);
14 debug("attempt %d failures %d", authctxt->attempt, authctxt->failures);

15 if ((style = strchr(user, ’:’)) != NULL)
16 *style++ = 0;

17 if (authctxt->attempt++ == 0) {
18 /* setup auth context */
19 struct passwd *pw = NULL;

5The function that is responsible to talk to the user or the chipcard drive etc.
63.0.2 as of writing
7due to lazy evaluation in the if() clause which is bad anyways

2 EXECUTION PATH ANALYSIS 7

20 pw = getpwnam(user);
21 /* AUD: execution path :-) */
22 if (pw && allowed_user(pw) && strcmp(service, "ssh-connection")==0) {
23 authctxt->pw = pwcopy(pw);
24 authctxt->valid = 1;
25 debug2("input_userauth_request: setting up authctxt for %s", user);
26 #ifdef USE_PAM
27 start_pam(pw->pw_name);
28 #endif
29 } else {
30 log("input_userauth_request: illegal user %s", user);
31 #ifdef USE_PAM
32 start_pam("NOUSER");
33 #endif
34 }
35 setproctitle("%s", pw ? user : "unknown");
36 authctxt->user = xstrdup(user);
37 authctxt->service = xstrdup(service);
38 authctxt->style = style ? xstrdup(style) : NULL; /* currently unused */
39 } else if (authctxt->valid) {
40 if (strcmp(user, authctxt->user) != 0 ||
41 strcmp(service, authctxt->service) != 0) {
42 log("input_userauth_request: mismatch: (%s,%s)!=(%s,%s)",
43 user, service, authctxt->user, authctxt->service);
44 authctxt->valid = 0;
45 }
46 }
47 /* reset state */
48 dispatch_set(SSH2_MSG_USERAUTH_INFO_RESPONSE, &protocol_error);
49 authctxt->postponed = 0;
50 #ifdef BSD_AUTH
51 if (authctxt->as) {
52 auth_close(authctxt->as);
53 authctxt->as = NULL;
54 }
55 #endif

56 /* try to authenticate user */
57 m = authmethod_lookup(method);
58 if (m != NULL) {
59 debug2("input_userauth_request: try method %s", method);
60 authenticated = m->userauth(authctxt);
61 }
62 userauth_finish(authctxt, authenticated, method);

63 xfree(service);
64 xfree(user);
65 xfree(method);
66 }

At line 22 the if() is only evaluated once, when it gets its first user-auth-request packet.
We have the chance to give invalid usernames more than once triggering a lot of different

2 EXECUTION PATH ANALYSIS 8

execution paths. PAM usually also plays its role in the timing of OpenSSH servers but it
is not possible to time, when the conversation function is called8, because the password is
sent along with the user and OpenSSH’s conversation function just obtains the password
from there. Theallowed user() function is just one example that it is possible to
trigger different, measurable execution paths in OpenSSH. The hard thing about OpenSSH
is that different versions behave different – timing wise.

Figure 1 shows a timing attack against an OpenSSH 2.2.0 server. It shows that this
version9 handles invalid logins faster than valid ones. Things are different for OpenSSH
3.0.2 for example10:

lydia:# ./horstweg stealth liane
Probing for nobody [valid] ...
[0.010902 0.010327 0.010329 0.010280 0.010296 0.010384 0.010296 0.010285

0.010415 0.010385]
avg: 0.0103265
Probing for h2o [invalid] ...
[0.011599 0.011127 0.011056 0.011073 0.011157 0.011082 0.012546 0.011080

0.011064 0.011089]
avg: 0.011273125
Probing for stealth ...
[0.010901 0.010408 0.010320 0.010358 0.010283 0.010381 0.010359 0.010332

0.010362 0.010292]
avg: 0.010350375
Factor valid/invalid is 0.916028164328879
Factor valid/guess is 0.997693320290328
Factor invalid/guess is 1.08915135925027

My guess is that ’stealth’ is VALID
lydia:# ./horstweg zope liane
Probing for nobody [valid] ...
[0.013549 0.010292 0.010282 0.010328 0.010302 0.010301 0.010349 0.010296

0.010307 0.010363]
avg: 0.010307125
Probing for h2o [invalid] ...
[0.011577 0.011081 0.011145 0.012325 0.011197 0.015682 0.011078 0.011076

0.011134 0.011041]
avg: 0.01183975
Probing for zope ...
[0.010839 0.010329 0.010282 0.010286 0.010339 0.010263 0.010334 0.010313

0.010320 0.010396]
avg: 0.01030825
Factor valid/invalid is 0.870552587681328
Factor valid/guess is 0.999890864113695
Factor invalid/guess is 1.14857031988941

My guess is that ’zope’ is VALID
lydia:# ./horstweg zobel liane
Probing for nobody [valid] ...
[0.010341 0.010275 0.010327 0.010385 0.010292 0.010324 0.010296 0.010289

8as we did in the PAM example
9at least in my environment

10beeing indeedzopeandstealthvalid andzobelinvalid

3 CHOOSING THE RIGHT CLOCK 9

0.011460 0.010274]
avg: 0.010456
Probing for h2o [invalid] ...
[0.011622 0.011055 0.012410 0.011093 0.011053 0.011055 0.011113 0.010813

0.011049 0.011108]
avg: 0.011205125
Probing for zobel ...
[0.011875 0.011094 0.011126 0.011070 0.011058 0.011117 0.011101 0.011036

0.011122 0.011067]
avg: 0.0110905
Factor valid/invalid is 0.933144431677469
Factor valid/guess is 0.942788873360083
Factor invalid/guess is 1.0103354222082

My guess is that ’zobel’ is INVALID
lydia:#

It tests one valid and one invalid account11 and looks whether valid/guess or in-
valid/guess is closer to1. It does not matter, whether invalid logins take longer or shorter,
they just need to be handled different. The patch may be downloaded from [epta].

3 Choosing the right clock

Finding a way to measure how much time certain actions of remotely located daemons
require is probably the hardest part. Since we speak about microseconds, the delay is not
visible for human beings. I triedgettimeofday() before and after receiving the reply
and it looked like differences up to milliseconds are possible. I used 10Mbit networks and
quite slow computers for testing. However timing attacks should be possible against fast
computers too, if the machines are not connected to the net by modem but with a link with
low latency. It turned out that using ticks is a good solution, too. To get the best results,
following conditions should be met when using this approach:

• stop your downloads

• kill cronandat daemons on local machine

• do not run unnecessary programs in background and try to have the same load for
every time-measure

For OpenSSH I included two patches, one using the timeticks just described and one
usinggettimeofday() , which is probably the better way.

I will try to get an appropriate lab environment with faster net and faster computers to
see up to which point execution paths are measureable remotely.

4 Outlook

Due to the complex nature of todays daemons such as OpenSSH, a lot of additional infor-
mation may be gathered. Since as showed even the underlying libraries play its role in the
timing game and I would not doubt that gathering following infos is possible:

• the usedlibc version
11this time usinggettimeofday()

5 COUNTER-MEASURES 10

• whether remote site uses precompiled packages

• whether remote site is using certain patches for the service

• the order of how users are listed in/etc/passwd

• info about distributed authentication

Remote attackers may also fingerprint the system by probing for particular usernames
such aszope, wwwrun, gdm, fax, postfixetc.. That way attackers get to know with high
probability which OS/distribution in which version is running on the remote system because
the defaultlist of valid usernames differs from distro to distro. If you did not care about this
timing-attack before – now you should.

5 Counter-measures

The only thing one could do, is putting the daemon to sleep for a random amount of time
like pam fail delay() before every reply. Maybe it is even possible to stick the de-
lay part in the TCP/IP stack usable via special socket-options but I think this would break
RFCs. You probably do not want to have a balanced tree of if()-conditions in your pro-
grams. I think it is very hard to force your program to take about the same time for every
class of input, except you measure that for certain input you have been too fast and wait the
amount of microseconds to reach execution times other classes of input have.

Acknowledgments

Thanks to various people for proof-reading and discussion.

References

[timing] Cryptography Research, Inc.
whitepapers about timing attacks and other interesting things
http://www.cryptography.com/resources/whitepapers/

[Openwall] The Openwall team.
several advisories also covering timing issues
http://www.openwall.com/advisories/

[epta] me ;-)
execution path timing analysis paper plus programs
http://stealth.7350.org/epta.tgz

REFERENCES 11

Figure 1: Timing an OpenSSH 2.2.0 server.

