
DetectingBackdoors

Yin ZhangandVernPaxson
�

Abstract

Backdoors areofteninstalledby attackerswho have compro-
miseda systemto easetheir subsequentreturn to the sys-
tem. We considertheproblemof identifying a largeclassof
backdoors,namelythoseproviding interactiveaccessonnon-
standardports,by passivelymonitoringasite’sInternetaccess
link. We developageneralalgorithmfor detectinginteractive
traffic basedon packet sizeandtiming characteristics,anda
setof protocol-specificalgorithmsthatlook for signaturesdis-
tinctiveto particularprotocols.Weevaluatethealgorithmson
large Internetaccesstracesandfind that they performquite
well. In addition,someof thealgorithmsareamenableto pre-
filtering usinga statelesspacket filter, which yields a major
performanceincreaseat little or no lossof accuracy. How-
ever, the successof the algorithmsis temperedby the dis-
covery that largesiteshave many userswho routinelyaccess
whatarein factbenignbackdoors,suchasserversrunningon
non-standardportsnottohide,but for mundaneadministrative
reasons.Hence,backdoordetectionalsorequiresasignificant
policy componentfor separatingallowablebackdooraccess
from surreptitiousaccess.

1 Intr oduction

A backdoor is a mechanismsurreptitiouslyintroducedinto a
computersystemto facilitateunauthorizedaccessto thesys-
tem.While backdoorscanbeinstalledfor accessinga variety
of services,of particularinterestfor network securityareones
that provide interactive access.Theseareoften installedby
attackerswho have compromiseda systemto easetheir sub-
sequentreturnto thesystem.

From a network monitoring perspective, suchbackdoors
frequentlyrun over protocolssuchasTelnet[PR83a], Rlogin
[Ka91], or SSH[YKSRL99]. An exampleof anon-interactive
backdoorwouldbeanunauthorizedSMTPserver [Po82], say
to facilitate relayingemail spam;and one somewhat in be-
tweenwouldbeanFTP[PR85] backdoorusedto provideac-
cessto illicit contentsuchaspiratedsoftware,or a Napster
server [NA99] run in violationof a site’spolicy.

Backdoorsare,by design,difficult to detect. A common
schemefor maskingtheirpresenceis to runaserverfor astan-
�
Y. Zhangis with theComputerScienceDepartment,CornellUniversity,

Ithaca,NY. Email: yzhang@cs.cornell.edu.V. Paxsonis with the AT&T
Centerfor InternetResearchat ICSI, at the InternationalComputerScience
Institutein Berkeley, CA, andwith theLawrenceBerkeley NationalLabora-
tory. Email: vern@aciri.org. Thispaperappearsin theProceedingsof the9th
USENIX SecuritySymposium,Denver, Colorado,August2000.

dard servicesuchas Telnet, but on an undistinguishedport
ratherthanthe well-known port associatedwith the service,
or perhapson a well-known port associatedwith a different
service. In this paperwe examinethe problemof detecting
backdoors,particularly interactive ones,by inspectingnet-
work traffic usinganintrusiondetectionsystem(IDS), where
we presumethat thereis a large volume of legitimate traf-
fic which mustbe distinguishedfrom the illegitimatetraffic.
To our knowledge,this problemhasnot beenpreviously ad-
dressedin theliterature.

Our generalapproachis to develop a set of algorithms
for detectingdifferent typesof interactive traffic. Theseal-
gorithmscan then be appliedto a traffic streamand when-
everthey detectinteractivetraffic usinganon-standardservice
port,wehavefoundsomeform of backdoor.

Therestof thepaperis organizedasfollows. In
�

2,wedis-
cussthe designconsiderationsandexaminethe tradeoffs of
differentapproaches.In

�
3, we developa generalalgorithm

for detectinginteractive traffic basedon its timing character-
istics, and in

�
4 we presenta numberof protocol-specific

algorithms.In
�

5, weevaluatethealgorithmsusingtracesof
Internettraffic. We summarizein

�
6.

2 DesignSpace

A basicprinciplefor backdoordetectionis to find distinctive
featuresindicative of theactivity of interest,be it generalin-
teractiveaccess,or useof aspecificprotocolsuchasSSH.The
morepowerful afeatureis for distinguishingbetweengenuine
instancesof theactivity andfalsealarms,thebetter.

Candidatesfor suchfeaturesincludethe specificcontents
of thedatastream,thesizeandtransmissionrateof thepack-
etsin the stream,andtheir timing structure.This last is po-
tentially very powerful for detectinginteractive traffic: stud-
iesof Internettraffic have foundthat the interarrivalsof user
keystrokes have a striking distribution [DJCME92, PF95],
namelyaParetowith infinite variance.Thereis alsothepossi-
bility thatacombinationof featureswill proveto havegreater
distinctivepower thanany onefeatureby itself.

We now turn to a discussionof varioustradeoffs thatarise
whenconsideringhow to developdetectionalgorithms.

2.1 Openvs.evasiveattackers

In general,network intrusiondetectionbecomesmuchmore
difficult whentheattackeractivelyattemptsto evadedetection
by the monitor [PN98, Pa98]. Much of the difficulty comes

1

from theability of attackersto exploit ambiguitiesin a traffic
stream.Fromamonitoringperspective,heuristicsmightwork
well for “open” (non-evasive)attackers,but completelyfail in
thefaceof anactively evasiveattacker.

While ideally any detectionalgorithmswe developwould
of coursebe resistantto evasive attackers,ensuringsuchro-
bustnesscansometimesbeexceedinglydifficult, andwe pro-
ceedhereontheassumptionthatthereis utility in “raisingthe
bar” even when a detectionalgorithmcan be defeatedby a
sufficiently aggressive attacker. We furthernotethat if anat-
tacker fully controlsboth theremoteandthelocalhost,andin
particularif they arepatientand/orable to deploy arbitrary
software, then all sortsof devious covert channelsbecome
possible1 [Gl93], andbackdoordetectionbecomesessentially
hopeless.Wedonotattemptto addresstheproblemof detect-
ing covertchannels.

Thus,we proposethealgorithmsin this papernot assolu-
tions, but merelyaswaystationsin the ongoing“arms race”
betweenattackersandintrusiondetection.Oneform of arms
racewe anticipateis particularlylikely is betweenthedevel-
opersof Napster[NA99] (andGnutella[GN00]) andourcor-
respondingdetectionalgorithm.Napsterhasahistoryof sites
attemptingto control its use,andof usersattemptingto cir-
cumvent theserestrictions[We00], and our algorithmgives
sitesa new tool for detectingsurreptitioususeof Napster.

2.2 Passivevs.activemonitoring

Onetradeoff is whetherweonly allow themonitorto perform
passive monitoring,or if it canactively inject traffic into the
network. Passive monitoringhasthe advantagethat it can-
notdisturbthenormaloperationof thenetwork. On theother
hand,anactivemonitorcouldaugmentits backdoordetection
by trying to connectto suspectedbackdoorsin orderto probe
theserver listeningon theport to determineits service.How-
ever, doingsocould in principle tip off theattacker asto the
presenceof themonitorandthediscoveryof thebackdoor.

In thispaperweconfineourselvesto monitorsthatonly use
passivemonitoring.

2.3 Content vs. timing

A natural approachfor detectingconnectionsto command
shellserversis to monitorthekeystrokeslookingfor common
shell commands.Sucha content-basedapproachhasseveral
drawbacks,however:

� Scanningeach byte in each incoming packet is very
expensive, especiallyif we must first reassembleTCP
streamsto defeatthe sort of evasionscharacterizedin
[Pa98]. The intrudercanthenoverloadthe monitor by
generatinga largeamountof legitimatetraffic.

1See[Ra00] for adiscussionof experienceswith runningNFSoveremail
by tunnelingIP packetsover messagesdeliveredby SMTP.

� Many commandshellsallow the userto definealiases
andediting characters,which caneasilydefeatthis ap-
proachunlessthemonitorperformsaliasandeditingex-
pansionof thecommands(suchasalsorequiredfor “bot-
tleneck”analysis[LWWWG98]).Notethatthisproblem
canariseeither inadvertently, becausethe attacker asa
matterof courseusesaliasesor redefinestheeditingse-
quences,or deliberately, whentheattacker is attempting
to evadedetection.Theformercasemaybeamenableto
heuristicanalysis;thelatterlikely is not.

� Theintrudercaneasilyevadethemonitorby encrypting
their contenteither throughsomeapplication-level en-
cryption method,or directly using encryptedprotocols
suchasSSH.

In contrast,timing-basedalgorithmscanbecompletelyun-
perturbedby theuseof encryption.However, timing informa-
tion canbecomedistorteddueto clock skew, propagationde-
lays,loss,andpacketizationvariations.Making timing-based
algorithmrobustagainstsuchnoiseis challenging.

2.4 Filtering

An importantfactorfor thesuccessof real-timebackdoorde-
tectionis filtering. Themoretraffic thatcanbediscardedon
a per-packet basisdueto patternsin theTCP/IPheaders,the
better, as this cangreatly reducethe processingload on the
monitor. As we will seein subsequentsections,filtering can
sometimesbehighlyeffectivein winnowingdownalargetraf-
fic streamto justa few packetsof interest.

However, thereis clearly a tradeoff betweenreducedsys-
temloadandlost information.First, if a monitordetectssus-
piciousactivity in a filteredstream,oftenthefiltering hasre-
movedsufficientaccompanying context that it becomesquite
difficult to determineif the activity is indeedan attack. In
addition,theexistenceof filtering criteriamakesit easierfor
the attackersto evadedetectionby manipulatingtheir traffic
sothatit nolongermatchesthefiltering criteria.For example,
an evasionagainstfiltering basedon packet size(seebelow)
is to usea Telnetclient modifiedto senda large numberof
do-nothingTelnetoptionsalongwith eachkeystroke or line
of input.

In addition,relianceon filtering cansignificantlymagnify
theproblemof “chaff,” i.e.,attackersgeneratingbogustraffic
that matchesthe filtering criteria in order to overwhelmthe
monitor’s analysisload,and/orto generatea hugenumberof
falsepositives,in orderto maska trueattack.

Threepossiblefiltering criteriafor backdoordetectionare:

� Packet size. Keystroke packets are quite small. Even
when entire lines of input are transferredusing “line
mode” [Bo90], packet payloadswill tend to be much
smallerthanusedfor bulk-transferprotocols.Therefore,
by filtering packets to only capturesmall packets, the
monitorcansignificantlyreduceits packetcaptureload.

2

� Directionality. In general,aninteractiveconnectionsuch
asTelnetis initiatedby theclient ratherthantheserver,
unlesstheattacker setsup somesortof callback mecha-
nism. This makesit possibleto filter connectionsbased
on their directionality(inboundvs.outbound).If we are
monitoringanInternetaccesslink andareonly interested
in detectingbackdoorsat thelocal site,we canlimit our
monitoringto just inboundconnections,which cansig-
nificantly reducethe packet captureload (for example,
by filtering outoutboundWebsurfingconnections).

Note that thereis alsoa “cold start” problemwhenthe
monitorstartsrunningandneedsto analyzeanexisting
traffic stream.In thiscase,it generallycannotdetermine
whetherthe traffic was initiated inboundor outbound,
andaccordinglycannotfilter it out.

� Packet contents. Whenwe areinterestedin identifying
specificinteractiveprotocols,it is sometimespossibleto
filter incomingpacketsbasedon patternsspecificto the
protocol.An exampleis SSH,discussedin

�
4.1below.

2.5 Accuracy

As with intrusion detectionin general,we face the prob-
lemof false positives (non-backdoorconnectionserroneously
flaggedasbackdoors)andfalse negatives (backdoorconnec-
tions the monitor fails to detect). The former canmake the
detectionalgorithmunusable,becauseit becomesimpossible
(or at leasttoo tedious)to examineall of thealertsmanually,
andattackerscanexploit thelatterto evadethemonitor.

We wouldof courselike to haveboththefalsepositiverate
andthefalsenegativeratebeaslow aspossible.But particu-
larly for thoseof ouralgorithmsthatarebasedonoverall traf-
fic characteristicsratherthansharpsignatures,we frequently
will have to choosetradeoffs betweenthetwo.

2.6 Responsiveness

Anotherimportantdesignparameteris the responsivenessof
thedetectionalgorithm. That is, aftera backdoorconnection
starts,how longdoesit takefor themonitorto detecttheback-
door?Clearly, it is desirableto detectbackdoorsasquickly as
possible,to enabletakingadditionalactionssuchasrecording
relatedtraffic or shuttingdown the connection.However, in
many caseswaiting longerallows themonitorto gathermore
informationandconsequentlycandetectbackdoorsmoreac-
curately, resultingin atradeoff of responsivenessversusaccu-
racy.

Another considerationrelatedto responsivenessconcerns
the systemresourcesconsumedby the detectionalgorithm.
If we want to detectbackdoorsquickly, then we must take
carenotto requiremoreresourcesthanthemonitorcandevote
to detectionover a short time period. On the otherhand,if
off-line analysisis sufficient, thenwe canusemoreresource-
intensivealgorithms.

3 A General Algorithm for Detecting
Interacti veBackdoors

In this sectionwe presenta generalalgorithmfor detecting
interactivebackdoorsbasedonkeystrokecharacteristics.The
algorithm incorporatesthreetypesof characteristics:direc-
tionality, packet sizes,andpacket interarrival times. We also
find we needto excludeexcessively shortflows (commonin
our tracesdueto theuseof scanningby automatedmonitor-
ing software),whichdo not provideenoughtraffic to analyze
soundly. Thecriterionwe useis to skip analysisof any flows
comprisedof fewer than8 packetsor lastinglessthan2 sec-
onds,wherea flow is one direction of a bidirectionalTCP
connection.

3.1 Exploiting connectiondir ectionality

As notedabove,aninteractiveconnectionis mostlikely initi-
atedby theclient, unlesstheserver hassomecallbackmech-
anism.Therefore,whenlooking for keystrokeswe needonly
considertraffic sentby theinitiator of aconnection.However,
if themonitordoesn’t seetheestablishmentof theconnection,
thatis, theconnectionis apartial connection,thereis noway
to tell who is the actualinitiator. In this case,we mustcon-
siderbothflows.

If we aremonitoringanaccesslink andareonly interested
in detectingbackdoorswithin the local site, we can further
exploit theconnectiondirectionalityandignoreall outbound
flows,evenif theconnectionis partial.

3.2 Exploiting packet length characteristics

3.2.1 The sizeof keystrokepackets

Keystroke packetsarelikely to bevery small,even if sentin
line mode,becausemostcommandsareshort. To verify this
assumption,we analyzedseveralInternettraffic traceswith a
total of 2.1 million TelnetandRlogin client datapackets. Of
these,79%carrieda singlebyte,97%carried3 bytesor less,
and99.7%carried20bytesor less.

For a traceof SSH1.x and2.x connections(very heavily
skewedtowards1.x), we foundthat28%of the150K client
datapacketshadlength20or less.(NotethatthoseSSHcon-
nectionswith predominantlybig packetsarelikely to be file
transfers.)

Consequently, we use20 bytesas our cutoff for “small”
packets.

3.2.2 Characterizing the fr equencyof small packets

Sincemostkeystrokepacketsarequitesmall,wecanexclude
thoseconnectionsthatdon’t haveenoughsmallpackets.More
specifically, we candevisea metricto measurethefrequency
of smallpacketsin a connection,which we thenuseto deter-
minewhetherweshouldexcludetheconnection.

3

The simplestmetric is the ratio of the numberof small
packetsover the total numberof packets,for a suitabledef-
inition of “small packet,” which per the previoussectionwe
defineas20bytesor lessof payload.Unfortunately, thismet-
ric doesn’t work well in practice. Although,asstatedin the
previous section,over 99.7% of keystrokes are very small,
suchstatisticsare basedon a large numberof connections.
For a specificconnection,wefind thattheratio canbeaslow
as30–40%.Consequently, in orderto prevent frequentfalse
negatives,we have to choosea conservative thresholdaslow
as20–30%.But with sucha low threshold,themetricshave
little discriminatingpower andcanintroducetoo many false
positives.

To avoid suchproblems,we deviseda metric � , definedin
termsof � , thenumberof smallpackets, � , thetotal number
of packets,and � , thenumberof gapsbetweensmallpackets.
A gapoccursany time two smallpacketsareseparatedby at
leastonelargepacket. We thenevaluate:

�	� ��
��
��� �
The intuition behind � is that consecutive small packetsare
strongindicatorsthat a connectionhasinteractive traffic. If
thesmallpacketsareall spreadthroughoutaconnection,then
we will have ������
�� , so ����� . If they areall grouped
together, then ����� and � will reflecttherelativeproportion
of smallpacketsin thetrace.

In ourfinal algorithm,wesetthethresholdto ����� �
�
.

3.3 Exploiting timing characteristics

As mentionedabove, keystroke interarrival times come in
a striking Paretodistribution, exhibiting a very broadrange
[PF95]. We can then exploit the tendency of machine-
driven, non-interactive traffic to sendpackets back-to-back,
with a very shortinterval betweenthem,to discriminatenon-
interactive traffic from interactive. We do so by examining
eachpair of back-to-backsmall packet arrivalsandcomput-
ing the ratio � of how many of theseinterarrival times fall
within therange10msecthrough2 sec.(Weneedto takecare
not to includeretransmittedpacketsin thiscomputation.)The
upperboundof 2 secis fairly arbitrary;using100secdoesnot
appreciablychangetheperformance.

We then definea metric � to quantify how often the in-
terarrival betweentwo consecutive smallpacketsfalls in this
range.In ourfinal algorithm,wesetthethresholdto ����� �

�
.

It mightappearthatthecriteriaof ����� �
�

and ����� �
�

are
too lax, andsingularly, they are;but jointly, they provehighly
effective,asweshow in

�
5.7.

3.4 Making the algorithm run in real-time

In this sectionwe discusstwo considerationsin usingtheal-
gorithm in real-time. First, we observe that we can reduce
the packet captureload a greatdealby filtering on the data

payloadlength of the packets to only capturesmall pack-
ets.tcpdump [JLM91] doesn’t actuallyhaveaneasyway to
specifya particularrangeof payloadsizes,but the following
will filter outall packetswith morethan20bytesof payload:

(packet length -
ip header length -
tcp header length) <= 20.
That is, data length <= 20.
(ip[2:2] - ((ip[0]&0x0f)<<2) -

(tcp[12]>>2)) <= 20

wherethe bit-shifting is requiredto extract the IP andTCP
headerlengths,which canbevariablelengthdueto thepres-
enceof IP or TCPoptions.

Introducingfiltering doesnot affect theevaluationof � for
a flow, since � is only computedfor packets that are con-
secutive in the TCP sequencespace(

�
3.3). However, we

must take carewhen evaluating � , sincenow that we only
seesmallpackets,wecan’t accuratelytell thetotalnumberof
packets � transmittedby a given flow. To solve this prob-
lem, whenever we seea gap in the sequencenumber, we
estimatethe numberof missinglarge packets in the gap as�
gap LARGE PKT SIZE! , where LARGE PKT SIZE is a

guessat the mostcommonsize for full-sized packets. This
size varieswith path characteristicssuchas the Maximum
TransmissionUnit, and alsodependson the particularTCP
implementation,but asa roughapproximationwesimply use
LARGE PKT SIZE ��"#�$� .

The other considerationfor real-timedetectionconcerns
how quickly thealgorithmcandetermineit hasfounda back-
door. For off-line analysis,it sufficesto checkwhetheracon-
nectionhasbackdoorcharacteristicswhentheconnectionter-
minates(or whenthe traceends),andaswe have defined �
and � above, they arein termsof statisticscomputedover a
connection’stotal lifetime.

Thesimplestway to adaptthealgorithmto run in realtime
is to reevaluate � and � on eachincomingpacket. Alterna-
tively, we canhave a timer for eachconnectionandtest the
connectionwhenever the timer goesoff. Unfortunately, nei-
ther approachworks well in practice. The major problemis
thatwhenweclassifyaconnectionasanon-backdoorconnec-
tion, wecan’t just ignoretheconnectionlateron,becauseit’s
hardto tell whethertheconnectionis indeeda non-backdoor
connection,or insteadactuallya backdoorconnectionwith a
preamblethat hasnon-backdoorcharacteristics(suchas the
TelnetoptionnegotiationsthatprecedeaTelnetlogin dialog).
Consequently, we have to keepre-testingeachnon-backdoor
connection,which is clearlyveryexpensive.

We addressthis problemby exponentiallybackingoff the
reevaluationtimer. We initially choosea small timeoutvalue
for thetimer (30seconds).Subsequently, wheneveraconnec-
tion appearsto be a non-backdoor, we increasethe timeout
valueby afactorof 1.5,whichspreadsthecomputationalload
over thelifetime of theconnection.

4

4 Special-Purpose Detection Algo-
rithms

In this sectionwe explorealgorithmsthat look for signatures
reflecting the use of particular protocols. If we then find
serversfor thoseprotocolsrunningon portsother thantheir
standardones,suchinstancesmayindicatethepresenceof a
backdoor.

Comparedto the general-purposedetection algorithm,
special-purposealgorithmscanbetterbenefitfrom protocol-
specificinformation,andhencearelikely to bemoreaccurate
or more efficient. On the other hand, relying on protocol-
specific information can make the algorithm susceptibleto
evasion,if theattackercanperturbthesignature.

Thereare two major applicationsfor special-purposede-
tectionalgorithms. First, they canbe usedasbaselinealgo-
rithmsto evaluatetheperformanceof thegeneral-purposeal-
gorithmdescribedin

�
3,allowing usto understandhow much

performancewe loseby makingthe algorithmmoregeneral
(and hencemore difficult to evade). Second,the special-
purposealgorithmsthemselvescan be usedeither individu-
ally or in combinationwith thegeneral-purposealgorithmto
detectbackdoors.

In the restof this section,we introduce15 algorithmsfor
detectingvariousinteractiveprotocolsandthelike. Basedon
differentdesignpurposes,wecandividethesealgorithmsinto
thefollowing two classes:

� Optimal algorithmsare designedto identify backdoors
as accuratelyas possible,without worrying abouteffi-
ciency. Suchalgorithmsareintendedfor useasbaseline
algorithmsandfor off-line analysis.

� Efficient algorithmsincorporateprotocol-specificfilter-
ing mechanismsinto the optimal algorithmsto reduce
their expense,at the costof a degreeof accuracy. The
tradeoff herevariesa greatdeal—sometimesit is even
possibleto usea simple packet filter to achieve accu-
racy in thesameleagueasfor muchmoreexpensive al-
gorithms(see

�
4.1 below)—andthe gain is algorithms

efficientenoughto usefor real-timedetection.

Table1 summarizesthealgorithmsdiscussedin therestof
thissection.

4.1 SSH

SecureShell (SSH)encryptstransmittedcontentwith strong
cryptography. It is increasinglyusedfor both interactive and
bulk transfertraffic. While all in all its deploymentrepresents
a major advancefor Internetsecurity, it presentssignificant
difficultiesfor content-basedintrusiondetectionpreciselybe-
causeit rendersthemonitorblind to thespecificsof eachcon-
nection.It is thusparticularlyattractive for backdooruse.

Ourfirstalgorithmfor detectingSSH,ssh-sig, usestheSSH
versionstringasthesignaturefor SSH.WhenanSSHconnec-
tion hasbeenestablished,bothsidessendanidentifyingstring

Backdoortype Optimalalgorithm Efficientalgorithm

SSH ssh-sig, ssh-len ssh-sig-filter
Rlogin rlogin-sig rlogin-sig-filter
Telnet telnet-sig telnet-sig-filter
FTP ftp-sig ftp-sig-filter
Rootprompt root-sig root-sig-filter
Napster napster-sig napster-sig-filter
Gnutella gnutella-sig gnutella-sig-filter

Table1: Summaryof thespecial-purposebackdoordetection
algorithms.

of the form “SSH-protoversion-softwareversioncomments”,
followed by carriage-returnandnewline (ASCII 13 and10,
respectively) [YKSRL99]. Themaximumlengthof thestring
is 255characters,includingthecarriage-return/newline. Ver-
sion stringscontainonly printablecharacters,not including
spaceor “ - ”.

Currently, theSSHprotocolversionis either“1.x” or “2.x”.
Therefore,it sufficesfor ssh-sigto look for text “SSH-1.” or
“SSH-2.” at thebeginningof thefirst datapacketsentin each
directionof aconnection.

We canreplacessh-sigwith the following tcpdumpfilter
(denotedasssh-sig-filter) for veryefficientdetection:

1st 4 bytes are ’SSH-’ and
bytes 5 and 6 are ’1.’ or ’2.’
tcp[(tcp[12]>>2):4] = 0x5353482D and
(tcp[((tcp[12]>>2)+4):2] = 0x312E or

tcp[((tcp[12]>>2)+4):2] = 0x322E)

Our seconddetectionalgorithm,ssh-len, usesan implicit
signature,thepacket length,to detectSSHsessions.Accord-
ing to the SSH specification,SSH 1.x will (in the absence
of TCPrepacketization)generatepacket payloadsizesof the
form %$&('*) , thatis, 4 morethanamultipleof 8. SSH2.x will
generatepayloadsizesof lengthat least16,andalsoa multi-
pleof thecipherblocksize,which is a multipleof 8 for all of
theciphersof whichweareaware.Therefore,for SSH,either
mostpacketswill havelength %+&,'-) , or mostwill havelength
%$& . Onedeviation occurswith the initial versionexchange,
whichdoesnotconformwith theserules.

In light of thispattern,ssh-lendetectsSSHasfollows:

1. First testfor an interactive connectionusingthe timing-
basedalgorithm(

�
3). If it is interactive, go to thenext

step,otherwisestop.

2. If the proportionof packetswith length %+&-'�) or the
numberof packetswith length %+& exceedsa threshold,
classifytheconnectionasSSH.

Weneedtobecarefulwhenchoosingthethreshold,because
packet retransmissionandfragmentationcansometimesdis-
tort suchcharacteristics.In our currentimplementation,we
setthethresholdto 75%.

5

4.2 Rlogin

Upon connectionestablishment,an Rlogin client sendsfour
NUL-terminatedstringsto theserver in thefollowing format
[Ka91]:

<NUL>
client-user-name<NUL>
server-user-name<NUL>
terminal-type/speed<NUL>

Theserver thenreturnsa zerobyte (NUL) to indicatethat
it hasreceivedthesestringsandis now in datatransfermode.
Algorithm rlogin-sig attemptsto detectRloginsessionsusing
this negotiationasa signature. It first appliesthe following
analysisto aconnection:

� For theflow towardstheinitiator of a connection,check
if thefirst byteis aNUL.

� For theflow sentby the initiator, keeptestingeachbyte
until oneof thefollowing eventshappens:

- A gapin sequencenumberoccurs;

- four NUL’shavebeenseen;

- an empty string or a non-7-bit-ASCII byte is
seen;or

- thenumberof byteswe examinedreachesa maxi-
mumbound(128in thecurrentalgorithm).

If the above terminatesby finding four NUL’s, then we
checkto seewhetherthe flow in the other directionbegins
with anon-NULbyte,or whetherwefoundany emptystrings
or non-7-bit-ASCIIbytes. If neitherof theselast two hold,
thentheconnectionis classifiedasanRloginconnection.

Wecancombinerlogin-sig with thefollowing tcpdumpfil-
ter, resultingin a moreefficientalgorithmrlogin-sig-filter :

last byte is 0 and data len != 0 and
data length <= 128
(tcp[(ip[2:2]-((ip[0]&0x0f)<<2))-1] = 0)
and ((ip[2:2]-((ip[0]&0x0f)<<2)-

(tcp[12]>>2)) != 0)
and ((ip[2:2]-((ip[0]&0x0f)<<2)-

(tcp[12]>>2)) <= 128)

Note that rlogin-sig testsfor whetherthe last byte in the
packet is NUL, ratherthan the first byte. This is necessary
becausewefind thatclientstendto sendtheir first NUL in its
own packet,andtheremainderof theprologinformationin a
secondpacket.

4.3 Telnet

The Telnetprotocol [PR83a] includesa quite generalmech-
anismfor negotiating options [PR83b]. Sincemost Telnet
sessionsbegin with a seriesof option negotiations,we can
attemptto detectthese,which have a distinctpattern,taking
oneof thefollowing four 3-byteformats:

IAC WILL option-code
IAC WON’Toption-code
IAC DOoption-code
IAC DON’T option-code

The codevaluesfor WILL, WON’T, DO, DON’T, and IAC
are251,252,253,254,and255respectively. Notethatsome
optionshave parameters,andsocanbelongerthantheabove
threebytes.

telnet-sig teststhefirst two bytesof eachincomingpacket
to seeif they matchthe beginningof any of the above. If a
connectiondoesn’t involve any option negotiation,we clas-
sify it asa non-Telnetconnection.Otherwise,we testthefol-
lowing additionalconditions:

� At least75%of thebytesare7-bit-ASCII.

� At least50%of thelinesarenot longerthan80bytes.

Theseaid in weedingout binarytraffic thathappensto match
theoptionpatternsabove.

We cancombinethefollowing packet filter with telnet-sig
to form a moreefficientalgorithm,telnet-sig-filter:

1st byte is <IAC> (0xff),
2nd byte is <251> - <254>
(tcp[(tcp[12]>>2):2] > 0xfffa) and
(tcp[(tcp[12]>>2):2] < 0xffff)

4.4 FTP

In this sectionwe look at a somewhatdifferentform of inter-
activeprotocol,theusercontrolportionof theFTPfile transfer
protocol[PR85]. FTPis a request/replyprotocolin which re-
questsaresentin single,usuallyshort,linesof ASCII text, and
replieshave a similar structure,but canbe longerandmulti-
line. SomeFTP requestsaresentin responseto useractiv-
ity, andaccordinglyhave interactive-like timing. Othersare
generatedmechanicallyby theFTPclient, andarrive closely
spaced.

Repliessentby FTPserversstartwith astatuscode(anum-
ber),followedbyany accompanyingtext. For aday’sworthof
FTPactivity betweentheLawrenceBerkeley NationalLabo-
ratoryandtherestof theInternet(7,229connections),thedis-
tributionof thecodein thefirst replyreturnedby theserveris:
code220 (“readyfor new user”)seen6,685times;code421
(“service not available”) seen535 times; code226 (“clos-
ing data connection”)seen7 times; codes426 (“connec-
tion closed”)and200 (“commandokay”) eachseenonce;no
othercodesseen.

Of these,if we missa server that returns421 we haven’t
actuallymissedanything significant,sincethe serviceis not
available.All thatreally mattersis detecting220 , thoughwe
caninclude421 , too,without toomuchextraeffort.

For FTPserverreplies,thefourthbyteis eitherablankor a
hyphen,thelatterindicatinga multi-line reply. Therefore,the
ftp-sig algorithmlooks in the first four bytesfor either220

6

or 421 , followedby eitherablankor ahyphen,asasignature
for anFTPconnection.

We canalsocomposeftp-sig-filter :

1st three bytes are ’220’,
4th byte is blank or hyphen
tcp[(tcp[12]>>2):4] = 0x3232302d or
tcp[(tcp[12]>>2):4] = 0x32323020

with a similarfilter for 421 .
Onedifficulty with this approachis that the samesort of

statuscodesareusedby thepopularSMTPmail transferpro-
tocol [Po82]. Code220 correspondsto “serviceready”and
421 to “servicenot available,” just as it doesfor FTP. This
meansthatouralgorithmsfor detectingFTPbackdoorsshould
work justaswell for SMTPbackdoors(whichcanactuallybe
beneficial),which in

�
5.5weexplorefurther.

4.5 Root Backdoor

Fromoperationalexperiencewe have foundthatoneparticu-
lar typeof backdoorinstalledby attackersis aUnix rootshell,
andtheconnectionto it maynot involveany Telnetoptionne-
gotiation.For these,oftentheserverstartsby sendingapacket
with a payloadof exactly two bytes:“#<blank>”, whichcor-
respondsto oneof theformsof aUnix rootshellprompt.This
givesusasimplealgorithm,root-sig, whichattemptsto detect
rootbackdoorsby looking for thetwo bytesin thefirst packet
sentby theserversideof aconnection,andthecorresponding
root-sig-filter:

look for ’# ’ in a packet with
exactly 2 bytes of payload
tcp[(tcp[12]>>2):2] = 0x2320 and
(ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) == 2

which, given its conceptualsimplicity, works surprisingly
well (see

�
5.6below).

4.6 Napster

Napsteris a distributed systemby which userscan share
copies of music that has been digitized in MP3 format
[NA99]. Usersrun a client thatconnectsto napster.com
serversfor purposesof publishingtheMP3’s thattheuserhas
madeavailableto thepublic, andfor searchingfor particular
MP3’s availableelsewherein the distributed database.The
serverredirectstheclient to otherclientsthathavethedesired
MP3 available,andtheclient thenmakesa directconnection
to thesourceof theMP3,bypassingtheserverat thispoint.

Napsterhasproven controversialbecauseoften the MP3
trading is in violation of copyright laws, and also because
MP3’stendto belargefiles,sotheenthusiasmof asite’sNap-
steruserscanconsumeconsiderableresources[NA00, Ha00].
Therefore,sitesmake efforts to control Napstertraffic, for
example by removing connectivity to the napster.com

servers. Napsterusershave taken counter-measuresto cir-
cumvent suchblocking [We00], including configuringNap-
ster servers to use non-standardports for their commu-
nications. Open-sourceNapsterclients are also available
[GN99, ON00a], which will aid Napsterusersin modifying
theclient’sbehavior to bettercircumventdetection.

DetectingNapstertraffic is thus in many wayssimilar to
detectingotherbackdoors,eventhoughin thiscasethetraffic
doesnot reflecta securityaccessviolation,but rathera policy
violation(authorizationratherthanauthentication).

Wefocusedontheproblemof detectingthecommunication
directly betweenNapsterclients (usedto transferthe actual
MP3’s). One thoughtwasto develop a genericMP3 detec-
tor, thoughour preliminarywork on this hasshown theprob-
lemto besomewhatdifficult, astheformathasashort,binary
headerthatdoesnot suggesta simple,distinctpatternto look
for [Bo00].

The Napsterclient communication,however, hasa quite
distinctive signature[ON00b]. The communicationbegins
with the string SENDor GET followed immediatelyby the
nameof the item (no interveningwhitespace).Furthermore,
we have foundthat theSENDor GETdirective is sentby the
Napsterclient in its own packet,2 so our currentversionof
napster-sig simply looks for either of thesestringssent in
their own packet and occurringat the beginning of a con-
nection. napster-sig-filter doesthe same,but without the
beginning-of-a-connectioncontext:

look for "SEND" or "GET" in a
packet by itself (so payload of
4 or 3 bytes, respectively)
((ip[2:2] - ((ip[0]&0x0f)<<2) -

(tcp[12]>>2)) = 4 and
tcp[(tcp[12]>>2):4] = 0x53454e44) or

((ip[2:2] - ((ip[0]&0x0f)<<2) -
(tcp[12]>>2)) = 3 and

tcp[(tcp[12]>>2):2] = 0x4745 and
tcp[(tcp[12]>>2)+2]=0x54)

4.7 Gnutella

Gnutellais a distribution systemsimilar in spirit to Napster
[GN00]. Its distinctivefeaturesarethatit is fully opensource,
it canbeusedto exchangearbitraryfiles andnot just MP3’s
(althoughtherearenow Napsteradd-onsfor doingthis, too),
and it hasno centralizedcomponent—Gnutellaclientssim-
ply needto know the nameof anotherGnutellaclient and
they canparticipatein thedistributionnetwork. Consequently,
Gnutellais likely to proveharderfor sitesto controlthanNap-
ster.

In its currentform, however, Gnutellais very easyto de-
tect. EachGnutellasessionbeginswith theconnectingclient
transmitting:

2Clearly, this is very easyfor theNapsterclient to change,andthecorre-
spondingchangeto maketo ourdetectoris lookingfor theabsenceof whites-
pacefollowing thedirective, whichwill addressmistakingNapsterGET’s for
thoseusedby HTTP.

7

GNUTELLACONNECT/. version /0. NL /0. NL /
andreceiving in reply:

GNUTELLAOK. NL /0. NL /
where . NL / is thenewline character(ASCII 10).

Accordingly, gnutella-sig looks for the string
“GNUTELLA. blank / ” at the beginning of a connec-
tion.

Thecorrespondinggnutella-sig-filter is:

look for "GNUTELLA " as first
9 characters of payload
tcp[(tcp[12]>>2):4] = 0x474e5554 and
tcp[(4+(tcp[12]>>2)):4] = 0x454c4c41
and tcp[8+(tcp[12]>>2)] = 0x20

5 Performanceevaluation

In thissectionweevaluatethealgorithmsdevelopedin
�

3 and�
4. Theevaluationsweredoneby addingimplementationsof

thealgorithmsto theBro intrusiondetectionsystem[Pa98].
Our generalframework for evaluationis asfollows. To as-

sessan algorithm’s accuracy, we first run it againstknown
interactivetraffic of theparticulartypeit is supposedto detect
(Telnet,Rlogin, SSH;or, for thegeneralalgorithm,a combi-
nationof TelnetandRlogin, sinceSSHtraffic is sometimes
bulk-transfer)andanalyzehow oftenit fails to flag a connec-
tion in the traceasinteractive. This evaluatesthe false neg-
ative rate. We then run the algorithmagainstpacket traces
of a site’s Internettraffic (thesehave high-volumeprotocols
suchasHTTP, NFS,andX11 removed,becauseotherwisewe
couldnotcapturethetracesreliably)to seewhichconnections
they markasinteractive,andthenmanuallyassesswhetherthe
connectiondoesindeedappearto be interactive. This evalu-
atesthefalse positive rate.

Note,we do not assesstheNapsterandGnutelladetectors,
as the traceswe useherewerecapturedbeforethoseappli-
cationsexisted. However, our informal assessmentbasedon
correlatingtraffic to known Napsterand Gnutellaports and
servicesis thatthey work verywell.

5.1 Tracedescription

We usedfour tracesto evaluatetheperformanceof thealgo-
rithms:

� ssh.trace (194MB,380Kpackets,905connections),
ahalf-hoursnapshotof all theSSHconnectionsseenlate
atnightontheInternetaccesslink (DMZ) of theUniver-
sity of CaliforniaatBerkeley (UCB).

� lbnl.mix1.trace (54MB,134Kpackets,4.6K con-
nections) and lbnl.mix2.trace (421MB, 863K
packets, 14.7K connections). Eachtracecontainsone
hour of aggregate traffic collectedat the DMZ of the

LawrenceBerkeley National Laboratory (LBNL), the
first in themiddleof thenight, thesecondin themiddle
of theafternoon.The traceshave hadhigh volumepro-
tocols(HTTP, SSH,NFS,X11,NNTP, FTPdata)filtered
out.

Note that we might well apply suchfiltering for opera-
tional use,too, decidingto tradeoff missingbackdoors
on thoseportsfor thereducedpacketcaptureload.

� lbnl.inter.trace (389MB, 3.5M packets, 5.5K
connections),oneday’s worth of TelnetandRlogin traf-
fic collectedatLBNL.

5.2 Performanceof SSHalgorithms

Weranssh-sigontracessh.trace to evaluateits falseneg-
ativeratio. Clearly, ssh-sigonly workswhenthebeginningof
a connectionis present.Altogether, thereare546 complete
SSHconnectionsin ssh.trace , noneof which is missed
by ssh-sig. This demonstratesthat the falsenegative ratio of
ssh-sigis extremely low, which is to be expectedsincethe
presenceof thesignatureis requiredby thespecification.

We then ran ssh-sig on lbnl.mix1.trace ,
lbnl.mix2.trace and lbnl.inter.trace to
evaluateits falsepositive ratio. Amongthe16,938complete
non-SSH connections,none is mis-classifiedas SSH by
ssh-sig. Therefore,the falsepositive ratio of ssh-sigis close
to 0.

ssh-sig-filter hasexactly the samegood performanceon
the traceswe have, which is not surprising,as the only ap-
parentopportunityfor error is unusualpacketizationsplitting
theSSHversiontext acrossmultiple packets.In addition,the
filtering gain is tremendous,becauseonly thosepacketsthat
containtheSSHversionstringneedto be furtherprocessed.
For ssh.trace , the algorithmneedsonly inspect111 KB
of packetsratherthanthe194MB presentin theentiretrace.

The major limitation of ssh-sigand ssh-sig-filter is that
they only work whenthebeginningof anSSHconnectionis
present.

SinceSSHcanbeusedfor bothinteractive traffic andbulk
transfer, it is difficult to soundlyevaluatethe falsenegative
ratio of ssh-len, which is designedto detectinteractive SSH
backdoors.Consequently, we only evaluatethefalsepositive
ratiohere.

Again,we ranssh-lenon thethreetraceswithout sshcon-
nections: lbnl.mix1.trace , lbnl.mix2.trace and
lbnl.inter.trace . Among the 16,938non-SSHcon-
nections,only 5 areclassifiedasSSHby ssh-len, yielding a
very low falsepositiverate.

Comparedwith ssh-sigandssh-sig-filter, ssh-lendoesnot
requirethepresenceof thebeginningof a connection.How-
ever, it is less robust for SSH 1.x over highly lossy links,
wheretwo SSHblocksof length %$&1'�) could be coalesced
dueto packet retransmission,resultingin a singlepacket of
%324&+56'7&98:';�=< bytes. Consequently, we only usessh-len
whenthebeginningof a connectionis missing.

8

5.3 Performanceof Rlogin algorithms

Altogetherthereare175completeRlogin connectionsin the
traces,noneof which is missedby rlogin-sig.

We begin with evaluatingthefalsepositive ratio of rlogin-
sig. In thefour traces,altogetherthereare17,306non-rlogin
connections,noneof whichis mis-classifiedasanRlogincon-
nection. This meansrlogin-sig also hasan extremely low
falsepositiveratio.

After adding filtering into rlogin-sig, we found that the
falsenegative ratio remainsthe same(0/175). Meanwhile,
the increasein the falsepositive ratio is marginal: altogether
thereare4 outof 17,306non-Rloginconnectionsthataremis-
classifiedasRloginconnectionsby rlogin-sig-filter .

Thefiltering gainof rlogin-sig-filter is significant.Among
the 1 GB datawe have in the four traces,only 16 MB data
needsto beprocessedby rlogin-sig.

The major limitation of rlogin-sig and rlogin-sig-filter is
similar to ssh-sig—they only work whenthe beginningof a
connectionis seenby themonitor.

5.4 Performanceof Telnetalgorithms

Again, we first evaluatethe falsenegative ratio of algorithm
telnet-sig. Unfortunately, it turnsout that many Telnetcon-
nectionsin our tracesarevery short. For suchshortconnec-
tions, telnet-sig fails becausetheconnectionsdo not include
optionnegotiations.On theotherhand,if a connectionis that
short,evenif it is indeeda backdoor, it is not likely to cause
significantdamage.

To maketheevaluationmeaningful,weonly considerthose
connectionssatisfying:

� theclientsendsat leasttwo linesof data;

� theserversendsat leastoneline of data;and

� thedurationof theconnectionis at least1 second.

After eliminatingconnectionsnot satisfyingtheserequire-
ments, 1,526 Telnet connectionsremain, 18 of which are
missedby telnet-sig. Furtherinspectionshows that17 out of
the 18 involve the samepublic library catalogserver, which
performspasswordlessloginswithoutany optionnegotiation.

Wefurtherfind thatof the12,708non-Telnetconnectionsin
the traces,noneis mis-classifiedasTelnetconnections.This
demonstratesthattelnet-sighasaverylow falsepositiveratio.

After adding filtering into telnet-sig to form algorithm
telnet-sig-filter, thefalsepositiveandfalsenegativeratiosare
unaffectedfor the traceswe have studied.Thefiltering gain,
however, is significant: telnet-sig-filter hasto processless
than1.5MB outof over1 GB of packetdata.

The major limitation of telnet-sig and telnet-sig-filter is
similar to ssh-sigand rlogin-sig—they only work whenthe
connectionas seenby the monitor includesoption negotia-
tions,which tendsto only occurat thebeginningof aconnec-
tion.

5.5 Performanceof FTP algorithms

As notedin
�

4.4,ourFTPdetectionalgorithmwill alsodetect
SMTP, soherewe notethis limitation andthentreatthe two
protocolstogether.

Wehavealtogether5,629FTP/SMTPsessionsin whichthe
server sentat least4 bytesof data. Of these,29 aremissed
by ftp-sig. Furtherinspectionshows that theseconnections
arealmostall partialconnectionsfor which the initial dialog
(which is farandaway themostlikely placefor oursignature
to trigger)is missing.Thisdemonstratesthatftp-sig hasalow
falsenegativeratio.

Among 20,135non-FTP/SMTPconnections,only one is
classifiedasFTP/SMTP. Furtherinspectionshows thatthis is
actuallyanFTPserver runningvia WinSock—sothereis no
falsepositiveafterall!

After addingfiltering, ftp-sig-filter enjoys thesameaccu-
racy, aswell asa terrific filtering gain: only 1.2 MB out of
over1 GB dataneedbeprocessedby ftp-sig-filter .

Again, the limitation for ftp-sig and ftp-sig-filter is that,
exceptfor rareexceptions,they onlywork whenthebeginning
of a connectionis seenby themonitor.

5.6 Root shellalgorithms

As faraswecantell, our tracesdonot includeany rootshells,
so we cannotsoundlyevaluatethe performanceof root-sig
and root-sig-filter. But seethe next sectionfor preliminary
experiencesindicatingthatthey (root-sig-filter, in particular)
arequitepowerful.

5.7 Performanceof the generaldetectionalgo-
rithm

To assessthe falsenegative ratio of the algorithm,we ran it
on tracelbnl.inter.trace , which consistsonly of Tel-
netandRloginconnections.Amongthe150completeRlogin
connections,26 aremissedby thealgorithm.Furtherinspec-
tion shows that23 areexcessively short(lessthan2 seconds
in duration,or only onecommandexecuted),andtheother3
areuserlogin failures. Among all 1,450Telnetconnections
that arenot excessively short,22 aremissedby the timing-
basedalgorithm.Therefore,thefalsenegativeratio is at least
comparableto telnet-sig. Furtherinspectionshows that the
algorithmfoundall 18 connectionsmissedby the telnet-sig,
but 22 connectionsdetectedby telnet-sig aremissedby the
timing-basedalgorithm.

To evaluate the false positive ratio of the algo-
rithm, we ran the algorithm on lbnl.mix1.trace and
lbnl.mix2.trace with all the Telnet/Rlogin/FTP/SSH/
SMTP connectionsfiltered out. Among over 12,000con-
nections,the timing-basedalgorithmreported57 backdoors.
Furtherinspectionshows that 45 areIMAP [Cr94] andPOP
[MR96] mail serversusedinteractively, andthereforearenot
in factfalsepositives.3

3Thealgorithmhasalsodetectedinteractive SMTPsessions,nominallya

9

5.8 Experiencewith production use

We only recentlybegunoperationaldeploymentof theback-
door detectionalgorithmsfor productionuseon the LBNL
DMZ. Oneof themostsurprising(and,in retrospect,obvious)
findingshasbeenthelargenumberof legitimatebackdoors.

For example,whenanalyzing20minutesof traffic from the
UCB DMZ (comprising4.9GB of dataafterfiltering out the
high volume traffic), the protocol-specificalgorithmsreport
334backdoorson non-standardports. Of these,326areFTP
serversonnon-standardports,7 areinteractivegames,andthe
remainingoneis a library cardcatalogserver. In contrast,the
timing-basedalgorithmreports220 backdoors.From visual
inspectionsof 75 of these,we found: 17 areinteractive AOL
sessions,19 areinteractivegames,14 arechatsessions,3 are
cardcatalogservers,7 areFTPsessions,andwe wereunable
to identify theother15.

Runningon thelive traffic stream,theSSHdetectionalgo-
rithmshave turnedupSSHserversrunningonport80 (nomi-
nally HTTP—theserver ranon thatport to provide tunneling
throughfirewalls); port 110 (nominally POP);port 32 (used
to run an older versionof SSHthanthe oneon port 22, due
to compatibilityproblems);ports44320–44327(aNAT server
with SSHaccessto thecollectionof hostsbehindit viaanum-
berof differentports);aswell asahostof variantsof 22(222,
922,2222, �>�?�).For productionuseit is unsafeto filter out thehigh-volume
protocols. Runningthe signature-basedtcpdumpfilters on
full traffic streamsdoesnot presentany performanceprob-
lems when using a kernel-basedpacket filter, as the filters
are highly selective. For the other protocol-specificdetec-
tors,it appearswecanalsorun themongood-sizedfull traffic
streams,as runningall of them againsta 10 GB traceonly
takesabout20CPUminutesona 400MHz PentiumII.

We run all of the protocol-specificdetectorsdaily against
tracesof LBNL traffic otherthanthehigh-volumeports.(We
will shortly be configuringour monitor to run themin real-
time.) We currently run with a setof five filters to remove
legitimate backdoors:the NAT front-endmentionedabove;
two hoststhat run a documentuploadservicethat triggers
ftp-sig (theprotocolis not FTPor SMTP, but hasa simi-
lar structure);a hostthatrunsa serviceon TCPport 497that
involvesanexchangethatlookslikeTelnetoptionnegotiation
(but isn’t); anda popularFTP server that sometimesserves
fileswith binarydatathatlookslikeembeddedTelnetoptions.

TheNapsterandGnutelladetectorshavebecomeimportant
toolsin enforcingLBNL’sappropriateusepolicy, and,for ex-
ample,havedetecteda remoteNapsterserver runningonport
21 (FTP) in anapparentattemptto hideor circumventa fire-
wall.

Therootbackdoorfilter, root-sig-filter, hasuncoveredroot
backdoorsrunningon UCB traffic. However, thesehave not
beenin the form originally intended(in which the connec-
tion beginsdirectly with “#<blank>”), which we know from
experiencearea rare,albeit striking, signature.Instead,be-

non-interactive protocol.

causethe filter versionof the algorithmdetects“#<blank>”
anywhere in a connection,providing it is sentas a prompt
(by itself with nonewline), root-sig-filter is quitepowerful at
detectingbothsometransitionsto root via theUnix su com-
mand,andsessionsfor which thepromptseenafterthelogin
prologis indeed“#<blank>”.

Part of theappealof root-sig-filter is thatit generatesvery
few candidateconnections,soeventhoughits falsehit rateon
generaltraffic is fairly high, the connectionsit flagsarenot
burdensometo check,andit is an exceptionallycheapalgo-
rithm in termsof computation.

We do not yet run thegeneralalgorithmoperationally. As
discussedabove, it detectslarge numbersof interactive ser-
vices, requiring time-consumingeffort contactingthe man-
agersfor the variousmachinesto determinethat in fact the
backdoorsare legitimate. But the potentialof the approach
seemsclearalready.

6 Summary

The problemof finding a backdoorconnectionin a flood of
otherwiselegitimatenetwork traffic initially appearsdaunting.
But becauseinteractive traffic hascharacteristicsquitediffer-
ent from most machine-driven traffic (smallerpacket sizes,
longer idle periods), it is possibleto searchefficiently for
suchtraffic. We havepresenteda generalalgorithmfor doing
so,andalsoprotocol-specificalgorithmsthat look for signa-
turesparticularto differentprotocols,both of which we im-
plementedin theBro intrusiondetectionsystem.

Oneunexpectedbenefitof developingtheprotocol-specific
algorithmswasto realizehow it is frequentlypossibleto fin-
gerprinta particularapplicationprotocolby uniqueor nearly
uniquetext it includes.This leadto thedevelopementof suc-
cessfulalgorithmsfor Napsterand Gnutella,which can be
importantto detectgiven that their usesometimesviolatesa
site’spolicy, andthattheirusersoftenattemptto evadedetec-
tion.

The algorithmsare frequentlyamenableto prefiltering in
which a statelesspacket filter discardsnearlyall of thetraffic
streambeforeit is evenconsideredby thealgorithm.Suchfil-
teringyieldsmajorperformanceincreasesin termsof reduced
CPUprocessing,for little or sometimesno decreasein accu-
racy. A relatedline of futurework thatmayprove fruitful is
to explorethepossibilityof combiningthegeneralalgorithm
with theprotocol-specificalgorithms,which is likely to yield
betteraccuracy.

While the algorithmswork very well, a major stumbling
blockwe failedto anticipateis thelargenumberof legitimate
“backdoors”thatusersroutinelyaccess.Thesearenot back-
doorsin thesurreptitioussense,but only in themoregeneral
senseof standardprotocolsbeingrun on non-standardports.
We have recentlybegun using the algorithmsoperationally,
which will necessitateboth thedevelopmentof refinedsecu-
rity policiesaddressingthe many legitimatebackdoors,and
honingour algorithmsasa mechanisticway to eliminatecer-

10

tain classesof benignbackdoors.But even given thesehur-
dles,@ we find theutility of thedetectionalgorithmsclearand
compelling,anda naturalnext stepis to now investigatetheir
applicationto detectingcustombackdoorprotocolssuchas
LOKI [da97] andBackOrifice [CERT98].

7 Acknowledgments

We would like to thank Ken Lindahl and Cliff Frost for
their greatlyappreciatedhelpwith gainingresearchaccessto
UCB’s traffic, andTaraWhalenandtheanonymousreviewers
for their feedbackon thework andits presentation.

References

[Bo90] D. Borman,“TelnetLinemodeOption,” RFC 1184,
Network Information Center, SRI International, Menlo
Park,CA, Oct.1990.

[Bo00] G. Bouvigne, “MPEG Audio Layer I/II/III
frame header,” http://www.mp3-tech.org/programmer/
frameheader.html,2000.

[CERT98] CERT VulnerabilityNoteVN-98.07,http://www.
cert.org/vul notes/VN-98.07.backorifice.html,Oct1998.

[Cr94] M. Crispin,“InternetMessageAccessProtocol- Ver-
sion 4,” RFC 1730, Network Information Center, DDN
Network InformationCenter, Dec.1994.

[da97] daemon9route@infonexus.com , “LOKI2 (the
implementation),” Phrack Magazine, 7(51),Sep.01,1997.
http://www.infowar.com/iwftp/phrack/Phrack51/P51-
06.txt .

[DJCME92] P. Danzig,S. Jamin,R. Cáceres,D. Mitzel, and
D. Estrin, “An Empirical Workload Model for Driving
Wide-areaTCP/IP Network Simulations,” Internetwork-
ing: Research and Experience, 3(1),pp.1-26,1992.

[Gl93] V. Gligor, “A Guideto UnderstandingCovert Chan-
nel Analysis of TrustedSystems,” NCSC-TG-030,ver-
sion 1, http://www.radium.ncsc.mil/tpep/lib-rary/rainbow/
NCSC-TG-030.html,NationalComputerSecurityCenter,
Nov. 1993.

[GN99] Gnapster, http://www.faradic.net/̃jasta/
gnapster.html,1999.

[GN00] Gnutella,http://gnutella.wego.com,2000.

[Ha00] J. Harrow, “The ConsumerInternet Steamroller,”
The Rapidly Changing Face of Computing, http://www.
compaq.com/rcfoc/20000417.html# Toc480185377,
April, 2000.

[JLM91] V. Jacobson,C.Leres,andS.McCanne,“tcpdump,”
ftp://ftp.ee.lbl.gov/tcpdump.tar.Z,1991.

[Ka91] B. Kantor, “BSD Rlogin,” RFC 1282, Network In-
formation Center, SRI International, Menlo Park, CA,
Dec.1991.

[LWWWG98] R. Lippmann, D. Wyschogrod,S. Webster,
D. Weber, and S. Gorton, “Using Bottleneck Verifi-
cation to Find Novel New Attacks with a Low False
Alarm Rate,” Proc. RecentAdvancesin Intrusion De-
tection, Sept. 1998; http://www.zurich.ibm.com/̃ dac/
ProgRAID98/Talks.html#Lippmann21 .

[MR96] J. MyersandM. Rose,“PostOffice Protocol- Ver-
sion 3,” RFC 1939, Network Information Center, DDN
Network InformationCenter, May 1996.

[NA99] Napster, http://www.napster.com,1999.

[NA00] Napster (Press Room), http://www.napster.com/
press.html,2000.

[ON00b] “Napster protocol specification,” http://opennap.
sourceforge.net/napster.txt, June2000.

[ON00a] OpenNap,http://opennap.sourceforge.net,2000.

[PF95] V. Paxsonand S. Floyd, “Wide-Area Traffic: The
Failureof PoissonModeling,” IEEE/ACM Transactions on
Networking, 3(3),pp.226-244,June1995.

[Pa98] V. Paxson,“Bro: A Systemfor DetectingNetwork In-
trudersin Real-Time,” Proc. USENIX Security Symposium,
Jan.1998.

[Po82] J.Postel,“SimpleMail TransferProtocol,” RFC821,
Network Information Center, SRI International, Menlo
Park,CA, Aug. 1982.

[PR83a] J. PostelandJ. Reynolds,“TelnetProtocolSpecifi-
cation,” RFC854,Network InformationCenter, SRI Inter-
national,MenloPark,CA, May 1983.

[PR83b] J.PostelandJ.Reynolds,“TelnetOptionSpecifica-
tions,” RFC 855,Network InformationCenter, SRI Inter-
national,MenloPark,CA, May 1983.

[PR85] J. Posteland J. Reynolds, “File TransferProtocol
(FTP),” RFC959,Network InformationCenter, SRI Inter-
national,MenloPark,CA, Oct.1985.

[PN98] T. PtacekandT. Newsham,“Insertion,Evasion,and
Denialof Service:EludingNetwork IntrusionDetection,”
SecureNetworks, Inc., http://www.aciri.org/vern/Ptacek-
Newsham-Evasion-98.ps,Jan.1998.

[Ra00] M. Ranum.“RE: Bypassingfirewall,” mailing list
firewall-wizards@nfr.net,Feb. 1, 2000.

[We00] D. Weekly, “How to getarounda Napsterblockade,”
http://david.weekly.org/code/napster-proxy.php3,2000.

[YKSRL99] T. Ylonen, T. Kivinen, M. Saarinen,T. Rinne,
andS.Lehtinen,“SSHTransportLayerProtocol,” Internet
Draft, draft-ietf-secsh-transport-07.txt,May 2000.

11

