X remote ICMP based OS fingerprinting techniques

Ofir Arkin
ofir@sys-security.com
Founder
The Sys-Security Group

http://www.sys-security.com

Fyodor Yarochkin

fygrave@tigerteam.net

August 2001

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 2

Contents
1 Introduction - What is X? 3
1.1 Why X7 . . e 3

2 Remote Active Operating System Fingerprinting Methods Used

By X 5
2.1 ICMP Error Message Quoting Size 5
2.2 ICMP Error Message Echoing Integrity 5
2.3 Precedence Bits Issues with ICMP Error Messages 7
2.4 DF Bit Echoing with ICMP Error Messages 8

2.5 IP Identification Field Value with ICMP Query Messages with

Linux Kernel 2.4.x based machines 8

2.6 The IP Time-To-Live Field Value with ICMP Messages 8

2.7 Using Code Field Values Different Than Zero with ICMP Echo

Requests L 9

2.8 TOSEchoing 10
2.9 DF Bit Echoing With ICMP Query Messages 10
2.10 The ?Who Answer What?? Approach 10

3 How does X works? 11
4 The Future development of X and xprobe 27
A Appendix: Summary of tests 30

B Appendix: Availability 35

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 3

Abstract

In this paper ICMP based remote OS fingerprinting techniques are dis-

cussed. A logic tree and a tool which deploys the tree logic are explained.

1 Introduction - What is X?

X is a logic which combines various remote active operating system fingerprint-
ing methods using the ICMP protocol, which were discovered during the "ICMP
Usage in Scanning” research project, into a simple, fast, efficient and a powerful

way to detect an underlying operating system a targeted host is using.

Xprobe is a tool written and maintained by Fyodor Yarochkin (fygrave@tigerteam.net)

and Ofir Arkin (ofir@sys-security.com) that automates X.

1.1 Why X?

X is a very accurate logic.

Xprobe is an alternative to some tools which are heavily dependent upon
the usage of the TCP protocol for remote active operating system fingerprint-
ing. This is especially true when trying to identify some Microsoft based op-
erating systems, when TCP is the protocol being used with the fingerprinting
process. Since the TCP implementation with Microsoft Windows 2000 and Mi-
crosoft Windows ME, and with Microsoft Windows NT 4 and Microsoft Win-
dows 98/98SE are so close, usually when using the TCP protocol with a remote
active operating systems fingerprinting process we are unable to differentiate
between these Microsoft based operating system groups. And this is only an

example.

As we will demonstrate the number of datagrams we need to send and receive
in order to remotely fingerprint a targeted machine with X is small. Very small.
In fact we can send one datagram and receive one reply and this will help us
identify up to eight different operating systems (or groups of operating systems).
The maximum datagrams the tool will send is four. This is the same number

of replies we will need. This makes Xprobe very fast as well.

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 4

Xprobe probes can be very stealthy. Xprobe does not send any malformed
datagrams to detect a remote OS type, unlike the common fingerprinting meth-
ods. Xprobe analyzes the remote OS T'CP/IP stack responses for valid packets.
Heaps of such packets appear in an average network on daily basis and very few
IDS systems ! are tuned to detect such traffic (and those which are, presumably

are very badly configured).

Usually when people see the types of datagrams being used by Xprobe,
they will think that what have happened was a simple Host Detection attempt,
while in fact the replying machines were not only detected, but their underlying

operating systems were revealed as well.

In the future Xprobe will be using actual application data with its probes.

This will help in disguising the real intentions of the probes.

X might change the traditional intelligence gathering approach. With the
traditional approach we need to detect the availability of a Host (using a Host
Detection method), find a service it is running (using port scanning), and than
identify the underlying operating system (with a remote active operating system
fingerprinting tool). If the targeted machine is running a service that is known
to be vulnerable it may allow a malicious computer attacker to execute a remote

exploit in order to gain unauthorized access to the targeted machine.

With X we combine the host detection stage with the operating system de-
tection stage. With maximum of four datagrams initiated from the malicious
computer attacker’s machine, we are able to determine if a certain machine is
running an operating system where certain vulenrabilities might be presented
(and attempted to be exploited). For example, a Microsoft Windows 2000 based
operating system can be identified with four datagrams traversing over the net-

work in total (two sent and two received).

Considering the amount of default installations of Microsoft Windows 2000
based systems in the network (with a vulnerable version of IIS 5.0 up and
running) a malicious computer attacker might try to compromise the targeted
machine with his third packet sent. This is especially true when our target is a

web server (targeting www.mysite.com for example).

1Zero payload and a few other things, currently deployed in Xprobe can be used to tune
your IDS to detect Xprobe probes currently. We will deal with these artifacts once the core

system would be in more or less stable state, for the moment it is a low priority

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 5

2 Remote Active Operating System Fingerprint-
ing Methods Used By X

X takes advantage of several remote active operating system fingerprinting

methods discovered during the "ICMP Usage in Scanning”[1] research project.

2.1 ICMP Error Message Quoting Size

Each ICMP error message includes the IP Header and at least the first 8 data
bytes of the datagram that triggered the error (the offending datagram); more
than 8 bytes may be sent according to RFC 1122[2].

Most of the operating systems will quote the offending packet’s IP Header
and the first 8 data bytes of the datagram that triggered the error. Several

operating systems and networking devices will echo more than 8 data bytes.
Which operating systems will quote more?

Linux based on Kernel 2.0.x/2.2.x/2.4.x, Sun Solaris 2.x, HPUX 11.x, Ma-
cOS 7.x-9.x (10.x not checked), Nokia boxes, Foundry Switches (and other OSs

and several Networking Devices) are good examples.

2.2 ICMP Error Message Echoing Integrity

Each ICMP error message includes the IP Header and at least the first 8 data
bytes of the datagram that triggered the error (the offending datagram); more
than 8 bytes may be sent according to RFC 1122.

When sending back an ICMP error message, some stack implementations
may alter the offending packet’s IP header and the underlying protocol’s data,
which is echoed back with the ICMP error message.

If a malicious computer attacker examines the types of alternations that have
been made to the offending packet’s IP header and the underlying protocol data,

he may be able to make certain assumptions about the target operating system.

The only two field values we expect to be changed are the IP time-to-live field

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 6

value and the IP header checksum. The IP TTL field value changes because the
field is decreased by one, each time the IP Header is being processed. The IP

header checksum is recalculated each time the IP TTL field value is decreased.

With X we will take advantage of ICMP Port Unreachable error messages
triggered by UDP datagrams sent to close UDP ports. We will be examining
several IP Header and UDP related field values of the offending packet being

echoed with the ICMP Error message, for some types of alternations.

IP Total Length Field - Some operating system IP stacks will add 20
bytes to the original IP total length field value of the offending packet, with
the one echoed with the IP header of the offending packet in the ICMP Error
message. Some other operating system IP stacks will decrease 20 bytes from the
original IP total length field value of the offending packet, with the one echoed
with the IP header of the offending packet in the ICMP Error message. And

some other operating system IP stacks will echo correctly this field value.

IPID - Some operating system IP stacks will not echo the IPID field value
correctly with their ICMP Error messages. They will change the bit order with
the value echoed. Other operating system IP stacks will echo correctly this field

value.

3Bits Flags and Offset Fields - Some operating system IP stacks will not
echo the 3Bits Flags and Offset fields value correctly with their ICMP Error
messages. They will change the bit order with these fields. Other operating

system IP stacks will echo correctly this field value.

IP Header Checksum - Some operating system IP stacks will miscalculate
the IP Header checksum of the offending packet echoed back with the ICMP
error message. Some operating system IP stacks will zero out the TP Header
checksum of the offending packet echoed back with the ICMP error message.

Other operating system IP stacks will echo correctly this field value.

UDP Header Checksum - Some operating system IP stacks will miscal-
culate the UDP Header checksum of the offending packet echoed back with the
ICMP error message. Some operating system IP stacks will zero out the UDP
Header checksum of the offending packet echoed back with the ICMP error

message. Other operating system IP stacks will echo correctly this field value.

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 7

Some operating system stacks will not echo correctly several field values with
the same ICMP Error Message, and not just one. This will enable us to use
multiple echoing integrity tests with just one ICMP Error messages sent by a

targeted machine.

2.3 Precedence Bits Issues with ICMP Error Messages

Each TP Datagram has an 8-bit field called the 'TOS Byte’, which represents
the IP support for prioritization and Type-of-Service handling.

The "TOS Byte’ consists of three fields.

The "Precedence field’[3], which is 3-bit long, is intended to prioritize the IP

Datagram. It has eight levels of prioritization.
Higher priority traffic should be sent before lower priority traffic.

The second field, 4 bits long, is the '"Type-of-Service’ field. It is intended
to describe how the network should make tradeoffs between throughput, delay,

reliability, and cost in routing an IP Datagram.

The last field, the '"MBZ’ (must be zero), is unused and must be zero. Routers

and hosts ignore this last field. This field is 1 bit long. 2
RFC 1812 Requirements for IP Version 4 Routers[4]:
74.3.2.5 TOS and Precedence

ICMP Source Quench error messages, if sent at all, MUST have their IP
Precedence field set to the same value as the IP Precedence field in the packet
that provoked the sending of the ICMP Source Quench message. All other
ICMP error messages (Destination Unreachable, Redirect, Time Exceeded, and
Parameter Problem) SHOULD have their precedence value set to 6 (INTER-
NETWORK CONTROL) or 7 (NETWORK CONTROL). The IP Precedence

value for these error messages MAY be settable”.

Linux Kernel 2.0.x, 2.2.x, 2.4.x will act as routers and will set their Prece-

dence bits field value to 0xcO with ICMP error messages. Networking devices

2The TOS Bits and MBZ fields are being replaced by the DiffServ mechanism for QoS

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 8

that will act the same will be Cisco routers based on IOS 11.x-12.x and Foundry

Networks switches.

2.4 DF Bit Echoing with ICMP Error Messages

What will happen if we will set the DF bit with an offending packet that will
trigger an ICMP error message from a targeted machine? Will the DF Bit be
set in the ICMP error message IP Header?

2.5 1P Identification Field Value with ICMP Query Mes-

sages with Linux Kernel 2.4.x based machines

Linux machines based on Kernel 2.4.0-2.4.4 will set the IP Identification field

value with their ICMP query request and reply messages to a value of zero.

This was later fixed with Linux Kernels 2.4.5 and up.

2.6 The IP Time-To-Live Field Value with ICMP Mes-

sages

”The sender sets the time to live field to a value that represents the maximum

time the datagram is allowed to travel on the Internet”.

The field value is decreased at each point that the IP header is being pro-
cessed. RFC 791 states that this field decreasement reflects the time spent
processing the datagram. The field value is measured in units of seconds. The
RFC also states that the maximum time to live value can be set to 255 seconds,
which equals to 4.25 minutes. The datagram must be discarded if this field

value equals zero - before reaching its destination.

Relating to this field as a measure to assess time is a bit misleading. Some
routers may process the datagram faster than a second, and some may process

the datagram longer than a second.

The real intention is to have an upper bound to the datagram lifetime, so

infinite loops of undelivered datagrams will not jam the Internet.

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 9

Having a bound to the datagram lifetime help us to prevent old duplicates to
arrive after a certain time elapsed. So when we retransmit a piece of information
which was not previously delivered we can be assured that the older duplicate

is already discarded and will not interfere with the process.

The IP TTL field value with ICMP has two separate values, one for ICMP

query messages and one for ICMP query replies.

The IP TTL field value helps us identify certain operating systems and
groups of operating systems. It also provides us with the simplest means to add
another check criterion when we are querying other host(s) or listening to traffic

(sniffing).

TTL-based fingeprinting requires a TTL distance to the done to be precal-
culated in advance (unless a fingerprinting of a local network based system is

performed system).

The ICMP Error messages will use values used by ICMP query request

messages.

2.7 Using Code Field Values Different Than Zero with
ICMP Echo Requests

When an ICMP code field value different than zero (0) is sent with an ICMP
Echo request message (type 8), operating systems that will answer our query
with an ICMP Echo reply message that are based on one of the Microsoft based
operating systems will send back an ICMP code field value of zero with their
ICMP Echo Reply. Other operating systems (and networking devices) will echo
back the ICMP code field value we were using with the ICMP Echo Request.

The Microsoft based operating systems acts in contrast to RFC 792[5] guide-
lines which instruct the answering operating systems to only change the ICMP
type to Echo reply (type 0), recalculate the checksums and send the ICMP Echo
reply away.

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 10

2.8 TOS Echoing

RFC 1349 defines the usage of the Type-of-Service field with the ICMP mes-
sages. It distinguishes between ICMP error messages (Destination Unreachable,
Source Quench, Redirect, Time Exceeded, and Parameter Problem), ICMP
query messages (Echo, Router Solicitation, Timestamp, Information request,
Address Mask request) and ICMP reply messages (Echo reply, Router Adver-
tisement, Timestamp reply, Information reply, Address Mask reply).

Simple rules are defined:

e An ICMP error message is always sent with the default TOS (0x0000)

e An ICMP request message may be sent with any value in the TOS field.
” A mechanism to allow the user to specify the TOS value to be used
would be a useful feature in many applications that generate ICMP request

messages” [6].

The RFC further specify that although ICMP request messages are nor-
mally sent with the default TOS, there are sometimes good reasons why

they would be sent with some other TOS value.

e An ICMP reply message is sent with the same value in the TOS field as

was used in the corresponding ICMP request message.
Some operating systems will ignore RFC 1349 when sending ICMP echo

reply messages, and will not send the same value in the TOS field as was used

in the corresponding ICMP request message.

2.9 DF Bit Echoing With ICMP Query Messages

What will happen if we will set the DF bit with ICMP query request messages?
Will the DF Bit be set with the ICMP query reply message?

2.10 The ?Who Answer What?? Approach

With this method we map which operating systems answer for which ICMP

Query message request.

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 11

We use:

ICMP Echo request

ICMP Timestamp request

ICMP Information request

ICMP Address Mask request

3 How does X works?

The logic was first built as a static decision tree. It was intended to be a proof-
of-concept logic using the various remote active operating system fingerprinting
methods using the ICMP protocol which were discovered during the ICMP

research project3.
Understanding the Logic

The most important ability we have is to isolate certain operating systems
and groups of operating systems according to a specific active operating system

fingerprinting method.

We initiate the process with a UDP datagram sent to a definitely closed
(3132 by default) UDP destination port.

Why are we using a UDP datagram?

We will take advantage of multiple operating system fingerprinting differ-
ences available with an ICMP Destination Unreachable Port Unreachable error
messages. To trigger the ICMP Port Unreachable error message we use the

UDP protocol.
Detecting the presence of a filtering device

When we try to communicate with a closed UDP port we will receive an
ICMP Port Unreachable error message back from a targeted host. If the port we
were trying to connect to is in a listening state then no reply will be generated,

since UDP is a stateless protocol.

3See the next chapter for future plans and enhancements

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 12

When a filtering device is blocking UDP traffic aimed at a targeted IP ad-
dress it will copycat the behavior pattern as with an open UDP port. Thos, we

will not receive any reply back.

Based on the fact that sending a UDP datagram to a closed UDP port
should elicit an ICMP Port Unreachable error message, we will send one UDP

datagram to a definitely closed UDP port we have chosen. Then:

o If no filtering device is present we will receive an ICMP Port Unreachable
error message, which will indicate that our targeted Host is alive (or if

this traffic is allowed by the filtering device).

e If no answer is received - a filtering device is filtering that port.

What is the definition of a ”definitely closed”

We can try to identify a number of UDP ports that are not being used by any
application. We can look at the TANA (Internet Assigned Numbers Authority)
list for port numbers located at: http://www.isi.edu/in-notes/iana/assignments/port-numbers

and choose some.

We can build a pool of numbers randomly picked at each time we use the

logic.

We can also choose UDP ports that are likely to be closed, with services

rarely used.

Combining other operating system fingerprinting tests with our

UDP query

We can combine several active operating system fingerprinting methods into
one query. We will send our UDP datagram with the DF Bit set. So the "DF
Bit echoing with ICMP Error Messages” active operating system fingerprinting
method will be used with the logic as well, not requiring additional ICMP or

other protocol queries.

The UDP datagram query will be carrying 70 data bytes. It will allow us
to test, if an ICMP Port Unreachable Error message is received, the amount of

data being echoed by the targeted machine.

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 13

Assuming we did not received any reply back from a targeted IP address,

we will consider it being protected by a filtering device.

After receiving an ICMP Port Unreachable error message from our targeted

IP address - The game begins.

UDP datagram send to a closed UDP port.
Datagram sent with the DF Bit Set, and data

portion of the request should contain 70
bytes .
No ICMP Error ICMP Port Unreachable Error
Message Received Message Received
Host Filtered / Down We Play

Figure 1: In the Beginning

We will be examining the Precedence Bits field value received with the ICMP

Port Unreachable Error message.

If this field value is equal to 0xcO the questionable IP address is probably
a Linux Kernel 2.0.x/ 2.2.x/2.4.x based machine, a Cisco based router running

I0S version 11.x-12.x, or an Extreme Networks Switch.

We Play

Precedence Bits ! = 0xc0 Precedence Bits = 0xc0

Linux Kernel 2.0.x/2.2.x/2.4.x Based
CISCO Equipment (Routers) with 10S 11.x-12..x
Extreme Networks Switches

Others

Figure 2: First Parameter to Look At

We need to use another check criterion to distinguish between the Linux Ker-
nel 2.0.x/2.2.x/2.4.x based IP addresses to the IP addresses of the networking

devices.

We will use the ICMP Error Quoting Size fingerprinting method.

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 14

Each ICMP error message includes the IP Header and at least the first 8
data bytes of the datagram that triggered the error (the offending datagram);
more than 8 bytes may be sent according to RFC 1122.

Most of the operating systems will quote the offending packet’s IP Header
and the first 8 data bytes of the datagram that triggered the error. Several

operating systems and networking devices will echo more than 8 data bytes.

One group of operating systems that will echo more than 8 data bytes of the
offending packet’s data will be Linux Kernel 2.0.x/2.2.x/2.4.x based machines.

The Networking devices that will set their precedence bits value to 0xcO with
their ICMP Port Unreachable error messages will echo only the first 8 data bytes
from the offending packet’s data.

This will enable us to divide between Linux Kernel 2.0.x/2.2.x/2.4.x based
IP addresses to IP addresses assigned to Cisco Routers using I0S 11.x-12.x or

Extreme Networks switches.

Using an Echoing Integrity problem with Extreme Networks switches (UDP
Header being echoed will be zeroed) we will be dividing between the switches

and the Cisco routers based on I0S 11.x-12.x
Back to the Linux branch

We are now interested in dividing the Linux Kernel 2.0.x/2.2.x/2.4.x based
group. We will use the fact that Linux 2.0.x based machines will use 64 as
their initial IP Time-to-Live field value with ICMP error messages, while Linux
2.2.x/2.4.x based machines will use 255 as their initial IP Time-to-Live field

value with ICMP error messages.

How can we distinguish between Linux based machines running Kernel 2.2.x

or Kernel 2.4.x7

With Linux Kernel 2.4.0-2.4.4 the IP ID field value with ICMP queries (and
replies) will be always equal to zero. This was later fixed with Linux Kernel

2.4.5 and up, as seen with net/ipv4/ip_output.c:

- ul6 id = 0;
+ ul6 id;

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 15

Linux Kernel 2.0.x/2.2.x/2.4.x Based
CISCO Equipment (Routers) with 10S 11.x-12..x
Extreme Networks Switches

Amount of Echoed Data from the
Offending Packet
Only the IP Header and 8 Data

Bytes from the Offending All the Offending Packet is

Packet is echoed with the echoed with the ICMP Port

ICMP Port Unreachable Error Unreachable Error message
message

CISCO Equipment (Routers) with 10S 11.x-12.x

Extreme Networks Switches Linux Kernel 2.0.x/2.2.x/2.4.x Based

UDP Checksum UDP Checksum

Echoed is OK Echoed =0 TTL~64 TTL ~ 255
CISCO Routers Extreme Networks) }
10S 11.X-12.x Switches Linux 2.0.x Linux Kernel 2.2.x/2.4.x based

Figure 3: Digging in the Precedence = 0xc0 branch

+ id = (sk 7 sk->protinfo.af_inet.id++ : 0);

This will help us divide IP addresses which are based on Linux Kernel
2.2.x/2.4.5 (and up) from IP addresses that are based on Linux Kernel 2.4.0-
2.4.4.

In order to use this method we will send ICMP Echo requests to the ques-
tionable IP addresses, waiting for an ICMP Echo reply to arrive.

The IP addresses producing an ICMP Echo reply with an IP ID field value
of zero will be Linux Kernel 2.4.0-2.4.4 based, while the rest of the IP addresses
will be Linux Kernel 2.2.x/2.4.5 based.

No reply is received for the ICMP Echo Request

We can than state that the questionable IP addresses are Linux Kernel 2.2.x

or Linux Kernel 2.4.x based, but a filtering device prevented us from concluding.
The Other Side of the Moon

We will now focus on IP addresses which produce an ICMP error message

with a precedence bits value of zero.

The second test we will put those IP addresses ICMP Error messages through

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 16

®

ICMP Echo Request

No Reply Reply
Linux Kernel 2.2.x/2.4.x based ICMP Echo mechanism is
A Filtering Device Prevents us from Concluding Not Filtered
IPID =0 IPID=0
Linux Kernel 2.2.x/2.4.5 Linux Kernel 2.4.0-2.4.4

Figure 4: Finding Linux Kernel 2.4.0-2.4.4

will be ”How much echoed data of the offending packet is carried with the ICMP

Port Unreachable Error Messages?”

We can divide the IP stacks into three groups:

o TP stacks that will echo 8 data bytes from the offending packet’s data
e TP stacks that will echo 64 data bytes from the offending packet’s data

o IP stacks that will echo more than 64 bytes from the offending packet’s
data

Precedence Bits !=0xc0

Amount of Echoed Data from the Offending Packet

Data Bytes of the Offending
Packet Echoed with the ICMP
Port Unreachable Error Message

=[More than 64 bytes]

Data Bytes of the Offending
Packet Echoed with the ICMP
Port Unreachable Error Message

=8

Data Bytes of the
Offending
Packet Echoed with the
ICMP Port Unreachable
Error Message = 64

3Com SuperStack Il switch SW/NBSI-

CF,11.1.0.00S38 Sun Solaris 2.3-2.8 Others
Nokia IPSO 3.2-3.2.1 releng 783-849 HPUX 11.x
Ricoh Aficio AP4500 Network Laser Printer MacOS 7.x - 9.x

Shiva AccessPort Bridge/Router Software V 2.1.0
[Linux 2.0.x/2.2.x/2.4.x]

Figure 5: The Other Side of the Moon

The 64 data bvtes group

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 17

The operating systems that will echo, by default, 64 bytes from the offending
packet’s data portion are Sun Solaris 2.3-2.8, HPUX 11.x, and MacOS 7.x-9.x
(10.x not checked).

We need another check criterion in order to differentiate between the oper-

ating systems belonging to this group.

We will query the questionable IP addresses with an ICMP timestamp re-
quest. Since Sun Solaris based machines will produce an ICMP Timestamp
reply for this request, while the HPUX 11.x and MacOS 7.x-9.x will not, we will
be able to divide this group.

If the ICMP Timestamp mechanism is blocked by a filtering device, all the
questionable IP addresses will turn as HPUX 11.x/MacOS 7.x-9.x.

This is also true if we try to use host based security features that comes
with Sun Solaris based machines. While we are able to configure a Sun Solaris
machine to ignore ICMP timestamp requests, we are unable to configure it to

ignore ICMP echo requests.

Since MacOS 7.x-9.x and HPUX 11.x IP stacks share similar behavior, we
are unable to differentiate between them. 4.
Sun Solaris 2.3 - 2.8

HPUX 11.x
MacOS 7.x - 9.x

@ ICMP TimeStamp Request

Reply No Reply

HPUX 11.x
MacOS 7.x - 9.x

Sun Solaris 2.3 - 2.8

Figure 6: Differentiating Between Sun Solaris and HPUX 11.x/MacOS 7.x-9.x

based machines

The More than 64 data bytes group

4If an HPUX 11.x based machine is configured to use the PMTU discovery process using
ICMP Echo requests we might be able to differentiate between HPUX 11.x based machines
to MacOS 7.x-9.x based machines

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 18

The operating systems and networking devices that will echo, by default,
more than 64 bytes from the offending packet’s data are 3Com SuperStack IT
switch SW/NBSI-CF 11.1.0.00S38, Nokia IPSO 3.2-3.2.1 releng 783-849, Ricoh
Aficio AP4500 Network Laser Printer, and Shiva Access Port Bridge/Router
Software V 2.1.0.

If, for some reason, the precedence bits field value will not be set to 0xc0
hex with Linux Kernel 2.0.x / 2.2.x / 2.4.x based machines, than these hosts

will fall into this category as well.
The 8 data bytes group
Most of the IP stacks will echo only 8 bytes from the offending packet’s data.

We will try to use, again, a fingerprinting test that will be conclusive with
its results. One such test is an Echoing Integrity test examining the IP total

length field value of the offending packet echoed with the ICMP Error message.

Here, again, we will have three main groups of IP stacks (and operating

systems):

e The IP Total Length field value being echoed correctly

e The TP Total Length field value being echoed is 20 bytes less than the

original value

e The IP Total Length field value being echoed is 20 bytes bigger than the

original value

The IP Total Length field value is 20 bytes less than the original

value

We will focus, first, on the group of operating systems that sets the value of
the echoed IP total length field value to a value 20 bytes less than the original
value. This group includes the following operating systems and networking
devices: OpenBSD 2.6-2.9, NFR IDS appliance, Apollo Domain/OS SR10.4,
Extreme Networks Switches, Network Systems router NS6614 (NSC 6600 series),
and Cabletron Systems SSR 8000 System Software, Version 3.1.B.16.

We need to use another check criterion to divide this group.

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 19

Echoing Integrity Check

IP Total Length Field Value of the
Offending Packet Echoed > 20
Bytes from the original

IP Total Length Field Value of the
Offending Packet Echoed is OK

IP Total Length Field Value of the
Offending Packet Echoed < 20
Bytes from the original

Other .

OpenBSD 2.6-2.9 AIX, BSDI, NetBSD 1.x-1.2.x

Apollo Domain/OS SR10.4
NFR IDS Appliance
[Extreme Networks Black Diamond switch]
[Extreme Networks Gigabit Switch]
Network Systems router NS6614 (NSC 6600 series)
Cabletron Systems SSR 8000 System Software, Version 3.1.B.16

Figure 7: Echoing Integrity Problems: IP Total Length Field Value

We will use another Echoing Integrity problem. This time we will be exam-

ining the UDP checksum field value echoed with the ICMP error message.

With the group of operating systems and networking devices listed above,

we will have three different values being echoed:

e The correct field value
o Zero

e ...And a faulty field value

Using this Echoing Integrity problem will allow us to isolate OpenBSD 2.6-
2.9 based operating systems and Apollo domain/OS SR10.4 from the rest of the

group according to the next diagram:

Since the Apollo Domain/OS echoes back a faulty IP Header checksum
field value as well, we can isolate it, and most important - IP addresses us-

ing OpenBSD 2.6-2.9.

The IP Total Length field value is 20 bytes higher than the original

value

With this group we will find operating systems such as: AIX 3.x, 4.x; BSDI
4x, 3.x, 2.x; NetBSD 1.0, 1.1, 1.2; and MacOS X 1.0, 1.1, 1.2.

The way to divide this group is by looking at echoing integrity problems with
the ICMP Error message these operating systems produced for our offending

UDP datagram®.
5Please note that the DF bit we refer to here is the one with the IP Header of the ICMP

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 20

OpenBSD 2.6-2.9
Apollo Domain/OS SR10.4
NFR IDS Appliance
[Extreme Networks Black Diamond switch]
[Extreme Networks Gigabit Switch]
Network Systems router NS6614 (NSC 6600 series)
Cabletron Systems SSR 8000 System Software, Version 3.1.B.16

Echoing Integrity Check

UDP Checksum Echoed

0 Bad OK
[Extreme Networks Black Diamond switch] NFR IDS Appliance OpenBSD 2.6-2.9
[Extreme Networks Gigabit Switch] Apollo Domain/OS SR10.4
Network Systems router NS6614 (NSC 6600 series)) .
Cabletron Systems SSR 8000 System Software, Version 3.1.B.16 Echoing Integrity Check

IP Header Checksum Echoed

WA

Apollo Domain/OS SR10.4 OpenBSD 2.6 - 2.9

Figure 8: Dividing the IP Total Length echoed < 20 bytes group

The first echoing integrity test will be with the IP Header checksum being
echoed. While AIX will miscalculate the value being echoed, the other operating

systems will zero out this field value.

The second echoing integrity test will be with the IP Identification field value
being echoed. Because of Bit ordering problems BSDI 2.x, 3.x, and NetBSD
1.x-1.2.x little Endian will not echo correctly the IP Identification field value,
while BSDI 4.x, NetBSD 1.x-1.2.x big Endian and MacOS X 1.0-1.2 will echo

it correctly.

The ICMP fingerprinting methods allow us to group together several oper-
ating systems with the BSDI/NetBSD 1.x-1.2.x/MacOS X 1.0-1.2 branch.

If you will examine closely these two groups you will understand they are all

based on the same TCP/IP base code.

Continuing with the main branch (IP Total Length field value

echoed correctly)

The next fingerprinting method to be used is another member of the Echoing

Error Message and not the one with the offending packet’s echoed data

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 21

AIX, BSDI, NetBSD 1.x-1.2.x, MacOS X 1.0-1.2

Echoing Integrity Check

IP Header Checksum

IP Header Checksum of the of the Offending
Offending Packet Echoed Packet Echoed
Equal 0 Miscalculated

*kk
BSDI, NetBSD 1.x-1.2.x,MacOS X 1.0-1.2 AIX

Echoing Integrity Check
IP ID of the Offending

Packet is Not Echoed
Correctly

IP ID of the Offending Packet
is Echoed Correctly

*k*k
BSDI 2.x, 3.x or NetBSD 1.x-1.2.x BSDI 4.x / NetBSD 1.x-1.2.x
Little Endian Big Endian / MacOS X 1.0-1.2

Figure 9: Dividing the IP Total Length echoed > 20 bytes group

Integrity family.

This time we are examining the 3bits (Unused, MF, DF) flags and offset
fields. Several operating systems, when a value is given with this fields with an

offending packet, will change the bit ordering with their ICMP error messages.

The next example is with NetBSD 1.3:

21:46:07.489298 ethO > 172.18.2.201.1144 > 172.18.2.20.re-mail-ck:
udp 80 (DF) [tos Ox11] (ttl 64, id 44586)

4511 006c ae2a 4000 4011 2f44 acl2 02c9
acl12 0214 0478 0032 0058 cfc4 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858 5858 5858
5858 5858 5858 5858 5858 5858

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 22

21:46:07.489298 eth0O < 172.18.2.20 > 172.18.2.201:
icmp: 172.18.2.20 udp port re-mail-ck unreachable Offending pkt:
172.18.2.201 > 172.18.2.20: (frag 10926:880512)
[tos 0x11] (ttl 64, bad cksum O!) (DF) (ttl 255, id 56)

4500 0038 0038 4000 ff01 1e8b acl2 0214
acl2 02c9 0303 ea7b 0000 0000 4511 006¢
2aae 0040 4011 0000 acl2 02c9 acl2 0214
0478 0032 0058 0000

Looking closely at the tcpdump trace above, we can see that the DF bit is
set with the offending UDP datagram. Looking at the ICMP Port Unreachable
error message at the echoed data part, the Bit order has changed from 4000
to 0040. This made the offending packet look like a fragmented datagram that
tried to access a closed UDP port.

Echoing Integrity Check

3Bits Flags & Offeset Field

Bad - Flipped 0 OK

FreeBSD 2.2.x - 4.1 [Probably 2.1.x as well] Ultrix Other
NetBSD 1.3.3, 1.3.2, 1.3.1, 1.3 [Probably from 1.0.x as well]

IP Header Checksum IP Header Checksum
Echoed ! =0 Echoed = 0

NetBSD 1.3.3,1.3.2,1.3.1, 1.3.0
Little Endian (i386)
[Probably from 1.0.x as well]

FreeBSD 2.2.x-4.1
[Probably 2.1.x as well]

Figure 10: 3Bits Flags & Offset Fields

Using this Echoing Integrity variation we are able to isolate FreeBSD 2.2.x-
4.1 based operating systems and NetBSD 1.3.x based operating systems.

Using another Echoing Integrity check, which examines the IP Header check-
sum being echoed we are able to divide between FreeBSD 2.2.x-4.1 based ma-
chines (IP Header checksum is not zero) and the NetBSD 1.3.x based machines
(IP Header Checksum 0)

Please note that we might see similar behavior with older versions of NetBSD

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 23

(1x-1.2.x), and with older versions of BSDI.

While FreeBSD 2.2.x-4.1 and NetBSD 1.3.x based machines will change the
Bit order with the value being echoed with the ICMP error message, Ultrix
based machines will send zero (0) as the field value with the echoed IP Header

with the ICMP error message.
We are again at the main branch.
Identifying Microsoft Based Operating Systems

In order to isolate the Microsoft based operating systems from the rest of

the questionable IP addresses left, we need to initiate another query.

We will use a method that sends code field value different than zero (0) with
ICMP Echo requests. The Microsoft based operating systems will use zero (0)
for their code field value with the ICMP echo replies they will produce, while
the rest of the OS world will use the same value given with the ICMP echo
request (as the RFC states).

With our ICMP echo request message we will be using another fingerprinting
method called ” TOS Echoing”. We will set the TOS field to a certain field value
with our ICMP echo request. Only certain operating systems will not echo back

this field value with their ICMP echo replies.

We will also set the DF bit with the request. It will enable us to use the
"DF Bit Echoing with ICMP Queries” fingerprinting method.

If we will not receive a reply for our ICMP echo request, than ICMP echo

requests are being filtered.
The MS based Operating Systems branch

Using the IP Time-to-Live field value we are able to identify Microsoft Win-
dows 95 based IP addresses. They will use a starting value of 32 for their IP
Time-to-Live field while the other Microsoft based operating systems will use

128.

The next criteria to be used is the ”TOS Echoing”. Since Microsoft Windows
2000 family of operating systems will not echo the TOS field value with their

ICMP Echo replies, we can isolate this group of operating systems from the rest

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 24

@ ICMP Echo Request
with the Precedence Bits! =0 ,DF Bit Set, ICMP Code Field !=0

ICMP Code Field ICMP Code Field
with the Reply =0 with the Reply 1 =0
Microsoft Windows Family Other

Figure 11: Identifying MS based OSs

Microsoft Windows Family

TTL ~32 TTL ~ 128
Windows 95 Other Windows Based OSs
Precedence Bits |= 0 Precedence Bits =0
Other Windows Based OSs Microsoft Windows 2000, SP1, SP2

98/98SE /ME/NTsp3-/NTsp4+

Figure 12: Identifying MS based OSs

of the Microsoft based operating systems.

Using the "Who Answer What?” approach we will divide the rest of the

Microsoft based operating systems, as the diagram below suggests.
Back to the main branch

From the operating systems left, Ultrix and Novell are the only operating

systems that will not echo back the DF bit with their ICMP Echo replies.

Using the IP Time-to-Live field value we will be able to differentiate between

the two.

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 25

@ 98/98SE /ME/ NTsp3- / NTsp4+
ICMP Time Stamp Request

No Reply Reply
Windows NT SP 3- Windows 98/98SE
Windows NT SP 4+ Windows ME
@ ICMP Address Mask Request @ ICMP Address Mask Request
No Reply Reply No Reply Reply
Windows NT SP 4 + Windows NT SP 3 - Windows ME Windows 98/98SE

Figure 13: Identifying MS based OSs

DF Bit Echoing With ICMP Error Messages

Looking again at the ICMP Error message triggered by the offending UDP
datagram we have sent, we will examine another fingerprinting technique - "DF
Bit echoing with ICMP Error messages”. Several operating systems will not set
the DF bit with the IP Header of the ICMP Error message, although we have
set it with our offending UDP datagram.

From the list of operating systems left, OpenBSD 2.1-2.5, and NetBSD 1.4,

1.5 will produce this kind of behavior.

Since OpenBSD 2.1-2.3 based machines will zero out the UDP checksum
with their ICMP port unreachable error messages, we can divide this group

further.
Main Branch - What is still left?

Until this point of the decision tree, the results we will receive are very

reliable.

From this point, it is very important to identify the target’s location/topology.

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 26

*DF BIt Echoing [with the request |

DF Bit Not Echoed DF Bit Echoed

Ultrix, Novell Other

TTL~ 128 TTL ~ 255

Novell Ultrix

Figure 14: Using DF Bit Echoing with ICMP Query Messages

Are we inside an Intranet?

o Are we on the Internet?
o Are we querying a host on another Intranet subnet?

o Are we querying a host on the Internet?

The next test is using the "Who answer what?” approach. The problem
is that my mapping of networking devices is far from being complete, and I
cannot conclude which networking devices will answer/not answer an ICMP

information request, for example.

This is another reason why I have stated that it is very important to under-

stand the surroundings of the target we are working against.

We will look for operating systems that answer ICMP Information request.

The answering

IP addresses will be checked for echoing integrity problems with their ICMP

error message they produced in step one of the decision tree.

The TP addresses that will answer Information request messages will be

OpenVMS, HPUX 10.20, and DGUX.

What’s next?

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 27

DF Blt Echoing [with the error]

DF Bit Not Echoed with the DF Bit Echoed with the
ICMP Error Message ICMP Error Message

OpenBSD 2.1-2.3x,2.4-25
NetBSD 1.5,1.4.1,1.4

Echoing Integrity Check

Other

UDP Checksum of the UDP Checksum of the
Offending Packet Echoed ! = 0 Offending Packet Echoed =0
OpenBSD 2.4.x - 2.5.x *OpenBSD 2.1.x - 2.3.x

NetBSD 1.5,1.4.1,1.4

Figure 15: Using DF Bit Echoing with ICMP Error Messages

After this stage the quality of results is questionable.

I have decided to stop at this point at the moment, although continuing from
here and identifying, for example, FreeBSD 4.1.1, 4.2, 4.3 and 5.0 beta is very

simple.

4 The Future development of X and xprobe

X goal is to be efficient and intelligent in determining the target IP stack. This

means that other features and capabilities will be added, and should be added.

Mainly two OS fingerprinting methods are planned to be used: hardcoded

” AT” mechanism (currently implemented) and singnature-based approach.

We are planning on adding some custom scenarios where one can specify the
topology which Xprobe should be working against. For example, if Xprobe is
being used on an internal LAN it may require one set of tests, where when used

to probe another host on the Internet it may require another set of tests.

We are planning on adding some fail over mechanisms to X. This means
that if a certain test will fail because we suspect a filtering device is blocking
our queries we will be able to ’fall’ into another scenario and logic. It will not

only be implemented if the ICMP Port Unreachable Error Message will not be

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 28

@

ICMP Information Request

Reply No Reply

OpenVMS, HPUX 10.x, DGUX Other

Echoing Integrity Check

IP ID Echoed is BAD IP ID Echoed is OK
~ OpenvMs HPUX 10.x, DGUX/Compagq Tru64,
with Digital TCPIP Services OpenVMS with Process Software
TCPWare

Echoing Integrity Check

IP Header Checksum IP Header Checksum Echoed
Echoed ! =0

DGUX/Compagq Tru64, OpenVMS with

HPUX 10.x
Process Software TCPWare

Echoing Integrity Check

UDP Checksum Echoed ! = 0 / YP Checksum Echoed =0

OpenVMS

with Process Software TCPWare DGUX/Compaq Trué4

Figure 16: Using ICMP Information Requests and Replies
received from a targeted machine, but also if ICMP Echo replies will not be
received, and might be implemented for other scenarios as well.

Also elements of network mapping will be included (ttl distance precalcu-
lation, optional reachability scanning, optional closed port search mechanism

etc).

We know we have some limitation with Xprobe:

e Xprobe is based on a static logic (X)

e Xprobe can identify only Operating Systems and a small number of net-

working devices

e Xprobe is ICMP/UDP based (i.g. if these protocols are filtered we fail)
We are planning some enhancements:

o Relaving on a fingerprinting Database.

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 29

e Using a dynamic logic with an internal "AT’.

e Adding vast support for networking devices.

e Implementing different tests according to different topologies.
e Implementing several filtering devices identification tests.

e Using real application databases with the UDP query.

e Certain network mapping capabilities shall be included (ttl distance pre-

calculation, search for closed UDP port, reachability tests, etc).

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 30

A Appendix: Summary of tests

Please refer to the table 1 for details.

Operating System

Queries to ID

Techniques Combo Used

Linux Kernel 2.0.x | 1 Precedence Bits Echoing,
Amount of Data Echoed, IP
TTL

Cisco Routers | 1 Precedence Bits Echoing,

based I0S 11.x- Amount of Data Echoed, UDP

12.0.x Checksum Echoed

Extreme Network | 1 Precedence Bits Echoing,

Switches Amount of Data Echoed, UDP
Checksum Echoed

Linux Kernel 2.2.x | 2 Precedence Bits Echoing,

/ 2.41-24.5 Amount of Data Echoed, IP
TTL, IPID

Linux Kernel 2.4.0 | 2 Precedence Bits Echoing,
Amount of Data Echoed, IP
TTL, IPID

MacOS 7.x - 9.x 2 Precedence Bits Echoing,
Amount of Data Echoed, Un-
used Bit

Sun Solaris 2.3-2.8 | 3 Precedence Bits Echoing,
Amount of Data Echoed, Echo
request with Unused Bit set,
Timestamp request

HPUX 11.x 3 Precedence Bits Echoing,
Amount of Data Echoed, Echo
request with Unused Bit set,
Timestamp request

AIX 3.x, 4.x 1 Precedence Bits Echoing,

Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
IP Header Checksum Echoed

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 31

Operating System

Queries to ID

Techniques Combo Used

BSDI 2x, 3x ;
NetBSD
little Endian

1.x-1.2.x

1

Precedence Bits
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
IP Header Checksum Echoed,
IP ID field value echoed

Echoing,

BSDI 4.x; NetBSD
1x-1.2x big En-
dian; MacOS X 1.0-
1.2

Precedence Bits
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
IP Header Checksum Echoed,
IP ID field value echoed

Echoing,

FreeBSD 2.2.x-4.1

Precedence Bits Echoing,
Amount of Data Echoed, TP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields, IP

Header Checksum

NetBSD 1.3.x

Precedence Bits
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields, IP
Header Checksum

Echoing,

Ultrix

Precedence Bits
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields

Echoing,

MS Windows 95

Precedence Bits
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field

Echoing,

MS Windows 2000

Precedence Bits
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, TOS field

Echoing,

value

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 32

Operating System

Queries to ID

Techniques Combo Used

Microsoft Windows

98/98SE

4

Precedence Bits Echoing,
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, TOS field
value, ICMP Timestamp re-
quest, ICMP Address Mask

request

Microsoft Windows
ME

Precedence Bits Echoing,
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, TOS field
value, ICMP Timestamp re-
quest, ICMP Address Mask

request

Microsoft Windows
NT4 SP 3 and be-

low

Precedence Bits Echoing,
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, TOS field
value, ICMP Timestamp re-
quest, ICMP Address Mask

request

Microsoft Windows
NT4 SP4 and above

Precedence Bits Echoing,
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, TOS field
value, ICMP Timestamp re-
quest, ICMP Address Mask

request

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 33

Operating System

Queries to ID

Techniques Combo Used

Ultrix

2

Precedence Bits
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, DF Bit
Echoing, IP TTL

Echoing,

Novell

Precedence Bits Echoing,
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, DF Bit

Echoing, IP TTL

OpenBSD 2.1-2.3

Precedence Bits
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, DF Bit

Echoing,

Echoing with Error Messages

OpenBSD 2.4-2.5 /
NetBSD 1.4, 1.5

Precedence Bits Echoing,
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, DF Bit

Echoing with Error Messages

OpenVMS with
Digital ~ TCP/IP

Services

Precedence Bits
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, DF Bit

Echoing,

Echoing with Error Messages,

ICMP Information request,

IPID echoing integrity

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 34

Operating System

Queries to ID

Techniques Combo Used

HPUX 10.20

3

Precedence Bits
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, DF Bit Echo-
ing with Error Messages, ICMP

Echoing,

Information request, IPID
echoing integrity, IP Header

Checksum

DGUX / Compaq
Tru64

Precedence Bits
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, DF Bit Echo-
ing with Error Messages, ICMP
request, IPID

Echoing,

Information
echoing integrity, IP Header
Checksum, UDP Checksum

OpenVMS with
Process software

TCPware

Precedence Bits Echoing,
Amount of Data Echoed, IP To-
tal Length Field Value Echoed,
3Bits Flags and Offset fields,
ICMP Code field, DF Bit Echo-
ing with Error Messages, ICMP
Information request, IPID
echoing integrity, IP Header

Checksum, UDP Checksum

Table 1: Summary of Tests

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 35

B Appendix: Availability
The developed software, and relevant documentation is available at following
locations:

http://www.sys-security.com/html/projects/X.html

http:/ /xprobe.sourceforge.net

http:/ /www.notlsd.net/xprobe/

Copyright © 2001 by Ofir Arkin and Fyodor Yarockin. 36

References

[1] http://www.sys-security.com

[2] RFC 1122 - Requirements for Internet Hosts - Communication

Layers, http://www.ietf.org/rfc/rfcl1122. txt

[3] RFC 791 - Internet Protocol
http://www.ietf.org/rfc/rfc791.txt

[4] RFC 1812 - Requirements for IP Version 4 Routers
http://www.ietf.org/rfc/rfc1812.txt

[5] RFC 792 - The ICMP Protocol
http://www.ietf.org/rfc/rfc792.txt

[6] RFC 1349 - Type of Service in the Internet Protocol Suite
http://www.ietf.org/rfc/rfc1349.txt

